DOI QR코드

DOI QR Code

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K. (Contribution from Department of Chemistry, Dongguk University) ;
  • Gupta, A.K. (Contribution from Department of Chemistry, Dongguk University) ;
  • Roh, Seung-Jae (Department of Chemistry, Hanyang University) ;
  • Lee, Won-Joo (Department of Chemistry, Hanyang University) ;
  • Han, Sung-Hwan (Department of Chemistry, Hanyang University)
  • Published : 2007.08.20

Abstract

To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.

Keywords

References

  1. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269 https://doi.org/10.1021/ar980112j
  2. Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J.; Humphrey-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 4146 https://doi.org/10.1021/ja058540p
  3. O'egan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  4. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, R.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613
  5. Lees, A. C.; Evrard, B.; Keyes, T. E.; Vos, J. G.; Kleverlaan, M.; Alebbi, C. A.; Bignozzi, C. A. Eur. J. Inorg. Chem. 1999, 2309
  6. Schwartz, O.; vab Loyen, D.; Jockusch, S.; Turro, N. J.; Durr, H. Photochem. Photobiol. A: Chem. 2000, 132, 91 https://doi.org/10.1016/S1010-6030(99)00235-X
  7. Takahashi, Y.; Arakawa, H.; Sugihara, H.; Hara, K.; Islam, R.; Katoh, Y.; Tachibana, M. Inorg. Chim. Acta 2000, 310, 169 https://doi.org/10.1016/S0020-1693(00)00279-6
  8. Garcia, C. G.; Nakano, A. K.; Klevelaan, C. J.; Murakami Iha, N. Y. Photochem. Photobiol. A: Chem. 2002, 151, 165 https://doi.org/10.1016/S1010-6030(02)00154-5
  9. Anandana, S.; Madhavana, J.; Maruthamuthua, P.; Raghukumarb, V.; Ramakrishnan, V. T. Solar Energy Materials & Solar Cells 2004, 419
  10. Islam, A.; Sugihara, H.; Arakawa, H. Photochem. Photobiol. A: Chem. 2003, 158, 131 https://doi.org/10.1016/S1010-6030(03)00027-3
  11. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphrey-Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, Md. K.; Gratzel, M. Adv. Mater. 2004, 16, 1806 https://doi.org/10.1002/adma.200400039
  12. Nazeerudin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835 https://doi.org/10.1021/ja052467l
  13. Ito, S.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, Md. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Gratzel, M. Adv. Mater. 2006, 18, 1202 https://doi.org/10.1002/adma.200502540
  14. Argazzi, R.; Bignozzi, C. A.; Hasselmann, G. M.; Meyer, G. J. Inorg. Chem. 1998, 37, 4533 https://doi.org/10.1021/ic980340+
  15. Hideki, S.; Shinji, S.; Takeuchi, Y.; Yanagida, M.; Sato, T.; Arakawa, H. Photochem. Photobiol. A: Chem. 2004, 166, 81 https://doi.org/10.1016/j.jphotochem.2004.04.036
  16. Geary, E. A. M.; Yellowlees, L. J.; Jack, L. A.; Oswald, I. D. H.; Parsons, S.; Hirata, N.; Durrant, J. R.; Robertson, N. Inorg. Chem. 2005, 44, 242 https://doi.org/10.1021/ic048799t
  17. Kleverlaan, C. J.; Indelli, M. T.; Bignozzi, C. A.; Pavanin, L.; Scandola, F.; Hasselman, G. M.; Meyer, G. J. J. Am. Chem. Soc. 2000, 122, 2840 https://doi.org/10.1021/ja992755f
  18. Kleverlaan, C. J.; Alebbi, M.; Argazzi, R.; Bignozzi, C. A.; Hasselman, G. M.; Meyer, G. J. Inorg. Chem. 2000, 39, 1342 https://doi.org/10.1021/ic991311h
  19. Islam, A.; Sugihara, Y.; Hara, L. P.; Singh, L. P.; Katoh, M.; Yanagida, M.; Takahashi, Y.; Arakawa, H. New J. Chem. Soc. 1998, 24, 343
  20. Yanagida, M.; Singh, L. P.; Sayama, K.; Hara, K.; Katoh, R.; Islam, A.; Sugihara, Y.; Hara, L. P.; Arakawa, H.; Nazeeruddin, Md. K.; Gratzel, M. J. Chem. Soc. Dalton Trans. 2000, 2817
  21. Goss, C. A.; Abruna, H. D. Inorg. Chem. 1985, 24, 4263 https://doi.org/10.1021/ic00219a012
  22. Wang, Y.; Perez, W.; Zheng, G. Y.; Rillema, D. P. Inorg. Chem. 1998, 37, 2051 https://doi.org/10.1021/ic970987e
  23. Zakeeruddin, S. M.; Nazeeruddin, Md. K.; Humphry-Baker, R.; Gratzel, M. Inorg. Chim. Acta 1990, 296, 250
  24. Henderson, L. J.; Fronczek, F. R. Jr.; Cherry, W. R. J. Am. Chem. Soc. 1984, 106, 5876 https://doi.org/10.1021/ja00332a020
  25. Agrell, H. G.; Lindgren, J.; Hagfeldt, A. Photochem. Photobiol. A: Chem. 2004, 164, 23 https://doi.org/10.1016/j.jphotochem.2003.12.015
  26. Liska, P.; Vlachopoulos, N.; Nazeeruddin, Md. K.; Comte, P.; Liska, P.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 3686 https://doi.org/10.1021/ja00219a068
  27. Kakoti, M.; Deb, A. K.; Goswami, S. Inorg. Chem. 1992, 31, 1302 https://doi.org/10.1021/ic00033a033
  28. Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759 https://doi.org/10.1021/cr941154y
  29. Nazeeruddin, Md. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C. H.; Gratzel, M. Inorg. Chim. Acta 1999, 38, 6298
  30. Agrell, H. G.; Lindgren, J.; Hagfeldt, A. Solar Energy 2003, 75, 169 https://doi.org/10.1016/S0038-092X(03)00248-2
  31. Xie, P.-H.; Hou, Y.-J.; Wei, T.-X.; Zhang, B.-W.; Cao, Y.; Huang, C.-H. Inorg. Chim. Acta 1996, 96, 73
  32. Lee, W.; Hyung, K.-H.; Kim, Y.-H.; Cai, G. I.; Han, S.-H. Electrochem. Com. 2007, 9, 729 https://doi.org/10.1016/j.elecom.2006.10.020
  33. Hyung, K.-H.; Kim, D.-Y.; Han, S.-H. New J. Chem. 2005, 29, 1022 https://doi.org/10.1039/b502353j
  34. Gratzel, M. Inorg. Chem. 2005, 44, 6841 https://doi.org/10.1021/ic0508371

Cited by

  1. Oxidation of Benzyl Alcohols with Extraordinarily High Kinetic Isotope Effects vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3003
  2. Synthesis and spectroscopic characterization of new heteroleptic ruthenium(II) complexes incorporating 2-(2′-pyridyl)quinoxaline and 4-carboxy-2-(2′-pyridyl)quinoline vol.65, pp.14, 2012, https://doi.org/10.1080/00958972.2012.698735
  3. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells vol.116, pp.16, 2016, https://doi.org/10.1021/acs.chemrev.5b00621
  4. Coordination chemistry and applications of versatile 4,5-diazafluorene derivatives vol.45, pp.1, 2016, https://doi.org/10.1039/C5DT03665H
  5. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires vol.19, pp.41, 2008, https://doi.org/10.1088/0957-4484/19/41/415202
  6. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells vol.8, pp.1, 2015, https://doi.org/10.3390/ma8010355
  7. Light-activated Ullmann homocoupling of aryl halides catalyzed using gold nanoparticle-functionalized potassium niobium oxides vol.8, pp.19, 2018, https://doi.org/10.1039/C8CY00996A
  8. Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application vol.42, pp.12, 2009, https://doi.org/10.1088/0022-3727/42/12/125108
  9. Photovoltaics literature survey (No. 58) vol.15, pp.8, 2007, https://doi.org/10.1002/pip.804
  10. Carboxylate Selective Calix[6]arene Ruthenium Complex vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.214
  11. Enhanced photocurrent in RuL2(NCS)2/di-(3-aminopropyl)-viologen/SnO2/ITO system vol.112, pp.1, 2007, https://doi.org/10.1016/j.matchemphys.2008.05.088
  12. Unusual Ru(III) Chloro Complexes Containing Bis-dentate Ligands vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2461
  13. Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.955
  14. Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells vol.5, pp.11, 2007, https://doi.org/10.1007/s11671-010-9705-z
  15. Synthesis of D-π-A type 4,5-diazafluorene ligands and Ru (II) complexes and theoretical approaches for dye-sensitive solar cell applications vol.1201, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2019.127202
  16. 4,5-Diazafluorene ligands and their ruthenium(II) complexes with boronic acid and catechol anchoring groups: design, synthesis and dye-sensitized solar cell applications vol.74, pp.9, 2021, https://doi.org/10.1080/00958972.2021.1914332
  17. Amphiphilic Z907 dye grafted ZnS/rGO and Zn1−XCdXS/rGO decorated nano-hybrid structures: Synthesis, characterization and applications in solid state dye sensitized solar ce vol.244, pp.None, 2007, https://doi.org/10.1016/j.ijleo.2021.167609