DOI QR코드

DOI QR Code

Resolution of a Multi-Step Electron Transfer Reaction by Time Resolved Impedance Measurements: Sulfur Reduction in Nonaqueous Media

  • Park, Jin-Bum (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Chang, Byoung-Yong (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Yoo, Jung-Suk (Department of Chemistry and Center for Integrated Molecular Systems) ;
  • Hong, Sung-Young (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2007.09.20

Abstract

The first reduction peak of the cyclic voltammogram (CV) for sulfur reduction in dimethyl sulfoxide has been studied using time resolved Fourier transform electrochemical impedance spectroscopic (FTEIS) analysis of small potential step chronoamperometric currents. The FTEIS analysis results reveal that the impedance signals obtained during short potential steps can be resolved into electron transfer reactions of two different time constants in a high frequency region. The FTEIS method provides snap shots of impedance profiles during an earlier phase of the reaction, leading to time resolved EIS measurements. Our results obtained by the FTEIS analysis are consistent with a series of electron transfer and chemical equilibrium steps of a complex reaction, making up an ECE (electrochemical-chemical-electrochemical) mechanism postulated from the results of computer simulation.

Keywords

References

  1. Bard, A. J.; Faulkner, L. R. Electrochemical Method, 2nd ed.; Wiley & Sons: New York, 2001; Chapters 2, 3, 4, and 12
  2. Bockris, J. O. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry, 2nd ed.; Kluer Academic/Plenum Publishers: New York, 2000
  3. Martin, R. P.; Daub, W. H. J.; Robert, J. L.; Sawyer, D. T. Inorg. Chem. 1973, 12, 1921 https://doi.org/10.1021/ic50126a047
  4. Badoz-Lamling, J.; Bonnaterre, R.; Cauquis, G.; Delamar, M.; Demange, G. Electrochim. Acta 1976, 21, 119
  5. Baranski, A. S.; Fawcett, W. R.; Gilbert, C. M. Anal. Chem. 1985, 57
  6. Evans, A.; Montenegro, M. I.; Pletcher, D. Electrochem. Commun. 2001, 3, 514 https://doi.org/10.1016/S1388-2481(01)00203-X
  7. Kim, B.-S.; Park, S.-M. J. Electrochem. Soc. 1993, 140, 115
  8. Han, D.-H.; Kim, B.-S.; Choi, S.-J.; Jung, Y.; Kwak, J.; Park, S.- M. J. Electrochem. Soc. 2004, 151, E283 https://doi.org/10.1149/1.1773733
  9. Bonnaterre, R.; Cauquis, G. J. C. S. Chem. Comm. 1972, 293
  10. Levillain, E.; Gaillard, F.; Leghie, P.; Demortier, A.; Lelieur, P. J. Electroanal. Chem. 1997, 420, 167 https://doi.org/10.1016/S0022-0728(96)04796-1
  11. Leghie, P.; Lelieur, J.-P.; Levillain, E. Electrochem. Commun. 2002, 4, 406
  12. Impedance Spectroscopy, 2nd ed.; Barsoukov, E.; Macdonald, J. R., Eds.; Wiley Interscience: Hoboken, NJ, 2005
  13. Creason, S. C.; Smith, D. E. J. Electroanal. Chem. 1972, 36, 1 https://doi.org/10.1016/S0022-0728(72)80439-X
  14. Creason, S. C.; Smith, D. E. Anal. Chem. 1973, 45, 2401 https://doi.org/10.1021/ac60336a008
  15. Smith, D. E. Anal. Chem. 1976, 48, 221A and 517A
  16. Schwall, R. J.; Bond, A. M.; Loyd, R. J.; Larsen, J. G.; Smith, D. E. Anal. Chem. 1977, 49, 1797 https://doi.org/10.1021/ac50020a041
  17. Schwall, R. J.; Bond, A. M.; Smith, D. E. Anal. Chem. 1977, 49, 1805 https://doi.org/10.1021/ac50020a042
  18. O'Halloran, R. J.; Schaar, J. E.; Smith, D. E. Anal. Chem. 1978, 50, 1073 https://doi.org/10.1021/ac50030a018
  19. Crzeszczuk, M.; Smith, D. E. J. Electroanal. Chem. 1983, 157, 205
  20. Popkirov, G. S.; Schindler, R. N. Rev. Sci. Instrum. 1992, 63, 5366 https://doi.org/10.1063/1.1143404
  21. Popkirov, G. S.; Schindler, R. N. Electrochim. Acta 1993, 38, 861 https://doi.org/10.1016/0013-4686(93)87002-U
  22. Darowicki, K.; Kawula, J. Electrochim. Acta 2004, 49, 4829 https://doi.org/10.1016/j.electacta.2004.05.035
  23. Yoo, J.-S.; Park, S.-M. Anal. Chem. 2000, 72, 2035
  24. Yoo, J.-S.; Song, I.; Lee, J.-H.; Park, S.-M. Anal. Chem. 2003, 75, 3294 https://doi.org/10.1021/ac0263263
  25. Park, S.-M.; Yoo, J.-S. Anal. Chem. 2003, 75, 455A
  26. Chang, B.-Y.; Park, S.-M. Anal. Chem. 2006, 78, 1052 https://doi.org/10.1021/ac051641l
  27. Park, S.-M.; Yoo, J.-S.; Chang, B.-Y.; Ahn, E.-S. Pure Appl. Chem. 2006, 78, 1069 https://doi.org/10.1351/pac200678051069
  28. Anson, F. C. Anal. Chem. 1966, 38, 54 https://doi.org/10.1021/ac60233a014
  29. Christie, J. H.; Osteryoung, R. A.; Anson, F. C. J. Electroanal. Chem. 1967, 13, 236 https://doi.org/10.1016/0022-0728(67)80121-9
  30. Bard, A. J.; Faulkner, L. R. Electrochemical Method, 2nd ed.; Wiley & Sons: New York, 2001;Chapter 5
  31. Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. 1979, 102, 415
  32. Stoynov, Z. B.; Savova-Stoynov, B. S. J. Electroanal. Chem. 1985, 183, 133
  33. Savova-Stoynov, B.; Stoynov, Z. B. Electrochim. Acta 1992, 37, 2353
  34. Stoynov, Z. Electrochim. Acta 1992, 37, 2357 https://doi.org/10.1016/0013-4686(92)85132-5
  35. Stoynov, Z. Electrochim. Acta 1993, 38, 1919 https://doi.org/10.1016/0013-4686(93)80315-Q
  36. Urquidi-Macdonald, M.; Real, S.; Macdonald, D. D. Electrochim. Acta 1990, 35, 1559
  37. Chang, B.-Y.; Hong, S.-Y.; Yoo, J.-S.; Park, S.-M. J. Phys. Chem. B 2006, 109, 19386
  38. Hong, S.-Y.; Park, S.-M. J. Phys. Chem. B 2006, 111, 9779
  39. Bard, A. J.; Faulkner, L. R. Electrochemical Method, 2nd ed.; Wiley & Sons: New York, 2001;Chapter 10
  40. Muzikar, M.; Fawcett, W. R. Anal. Chem. 2004, 76, 3607 https://doi.org/10.1021/ac0499524
  41. Smith, D. E. Electroanal. Chem. 1966, 1, 1
  42. Smith, D. E. Crit. Rev. Anal. Chem. 1971, 2, 247
  43. Chang, B.-Y.; Park, S.-M. Anal. Chem. 2007, 79, 4892 https://doi.org/10.1021/ac070169w
  44. Harrington, D. A.; van den Driessche, P. Electrochim. Acta 1999, 44, 4321 https://doi.org/10.1016/S0013-4686(99)00148-6
  45. Harrington, D. A. J. Electroanal. Chem. 1996, 403, 11 https://doi.org/10.1016/0022-0728(95)04220-2
  46. Harrington, D. A. J. Electroanal. Chem. 1998, 449, 9 https://doi.org/10.1016/S0022-0728(97)00466-X
  47. http://web.uvic.ca/~dharr/impedance/manystep.htm

Cited by

  1. Real-Time Staircase Cyclic Voltammetry Fourier Transform Electrochemical Impedance Spectroscopic Studies on Underpotential Deposition of Lead on Gold vol.112, pp.43, 2008, https://doi.org/10.1021/jp805960j
  2. Electrochemical Impedance Spectroscopy vol.3, pp.1, 2010, https://doi.org/10.1146/annurev.anchem.012809.102211
  3. Zinc Oxidation in Dilute Alkaline Solutions Studied by Real-Time Electrochemical Impedance Spectroscopy vol.116, pp.13, 2012, https://doi.org/10.1021/jp211227u
  4. Unified Model for Transient Faradaic Impedance Spectroscopy: Theory and Prediction vol.116, pp.32, 2012, https://doi.org/10.1021/jp306140w
  5. Potential-Resolved Snapshot Impedance Spectroscopy for Exploring the Mechanism of a Complex Reaction Undergoing Parallel Pathways vol.116, pp.34, 2012, https://doi.org/10.1021/jp305283z
  6. vol.25, pp.4, 2013, https://doi.org/10.1002/elan.201200539
  7. Mass‐Transfer Admittance Voltammetry from Electrochemical Impedance Spectroscopy and Its Applications vol.23, pp.9, 2011, https://doi.org/10.1002/elan.201100173
  8. Fourier transform electrochemical impedance spectroscopic studies on platinum electrodes in an acidic medium vol.656, pp.1, 2007, https://doi.org/10.1016/j.jelechem.2010.10.026
  9. Lithium-ion storage performance of camphoric carbon wrapped NiS nano/micro-hybrids vol.4, pp.23, 2007, https://doi.org/10.1039/c4ra00176a
  10. An Impedance Molecularly Imprinted Sensor for the Detection of Bovine Serum Albumin (BSA) Using the Dynamic Electrochemical Impedance Spectroscopy vol.32, pp.5, 2007, https://doi.org/10.1002/elan.201900570