DOI QR코드

DOI QR Code

Facile Synthesis of 3-Benzylidene-5-aryl-3H-furan-2-ones Starting from the Baylis-Hillman Adducts

  • Lee, Chang-Gon (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Ka-Young (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Seong-Jin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2007.05.20

Abstract

Keywords

References

  1. Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 2007 https://doi.org/10.1016/j.tetlet.2007.01.062
  2. Crist, R. M.; Reddy, P. V.; Borhan, B. Tetrahedron Lett. 2001, 42, 619 https://doi.org/10.1016/S0040-4039(00)02021-9
  3. Janecki, T.; Bodalski, R. Synthesis 1989, 506
  4. Minami, T.; Tokumasu, S.; Hirao, I. Bull. Chem. Soc. Jpn. 1985, 58, 2139 https://doi.org/10.1246/bcsj.58.2139
  5. Muthiah, C.; Kumar, K. S.; Vittal, J. J.; Kumara Swamy, K. C. Synlett 2002, 1787
  6. Alvernhe, G.; Lacombe, S.; Laurent, A.; Marquet, B. J. Chem. Res. 1980, 54
  7. Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936 https://doi.org/10.1021/jo034308v
  8. Wawrzenczyk, C.; Grabarczyk, M.; Bialonska, A.; Ciunik, Z. Tetrahedron 2003, 59, 6595 https://doi.org/10.1016/S0040-4020(03)01052-4
  9. Mead, K. T.; Yang, H.- L. J. Org. Chem. 1990, 55, 2991
  10. Rhee, J. U.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674 https://doi.org/10.1021/ja0637954
  11. Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. Tetrahedron 1998, 54, 135 https://doi.org/10.1016/S0040-4020(97)10265-4
  12. Filler, R.; Piasek, E. J.; Mark, L. H. J. Org. Chem. 1961, 26, 2659 https://doi.org/10.1021/jo01066a011
  13. Raj, A. A.; Raghunathan, R. Tetrahedron 2003, 59, 2907 https://doi.org/10.1016/S0040-4020(03)00346-6
  14. Raj, A. A.; Raghunathan, R.; SrideviKumari, M. R.; Raman, N. Bioorg. Med. Chem. 2003, 11, 407 https://doi.org/10.1016/S0968-0896(02)00439-X
  15. Huang, Y.; Alper, H. J. Org. Chem. 1991, 56, 4534 https://doi.org/10.1021/jo00014a039
  16. Bourotte, M.; Schmitt, M.; Follenius-Wund, A.; Pigault, C.; Haiech, J.; Bourguignon, J.-J. Tetrahedron Lett. 2004, 45, 6343 https://doi.org/10.1016/j.tetlet.2004.06.072
  17. Patil, S. N.; Liu, F. Org. Lett. 2007, 9, 195 https://doi.org/10.1021/ol062551l
  18. Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977 https://doi.org/10.1016/j.tetlet.2005.11.142
  19. Lee, K. Y.; Park, Y. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143 https://doi.org/10.5012/bkcs.2007.28.1.143
  20. Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147 https://doi.org/10.5012/bkcs.2007.28.1.147
  21. Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1489 https://doi.org/10.5012/bkcs.2006.27.9.1489

Cited by

  1. Microwave-assisted synthesis of the (E)-α-methylalkenoate framework from multifunctionalized allylic phosphonium salts vol.23, pp.2, 2012, https://doi.org/10.1002/hc.21001
  2. Tunable Phosphine-Mediated Domino Reaction: Selective Synthesis of 2,3-Dihydrofurans and Biaryls vol.355, pp.1, 2012, https://doi.org/10.1002/adsc.201200675
  3. Selective Preparation of Functionalized Dienes from Allylic Phosphonium Salts through the Wittig Reaction vol.24, pp.5, 2013, https://doi.org/10.1002/hc.21104
  4. Synthesis of arylmethylidene(ethylidene)furanones vol.4, pp.3, 2014, https://doi.org/10.1134/S2079978014030017
  5. Synthesis of 3-(γ,δ-Disubstituted)allylidene-2-Oxindoles from Isatins by Wittig Reaction with Morita-Baylis-Hillman Bromides vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10053
  6. Synthesis of Aminonaphthalenes from Morita-Baylis-Hillman Carbonates via 6π-Electrocyclization of Ketenimine Intermediates vol.37, pp.7, 2016, https://doi.org/10.1002/bkcs.10812
  7. Palladium-Catalyzed Carbonylative Coupling of Aryl Iodides and Benzyl Acetylenes to 3-Alkylidenefuran-2-ones under Mild Conditions and Its Density Functional Theory Modeling vol.18, pp.50, 2012, https://doi.org/10.1002/chem.201202138
  8. )-furanones by sequential hydroacyloxylation-Mizoroki–Heck reactions of iodoalkynes vol.16, pp.42, 2018, https://doi.org/10.1039/C8OB02063A
  9. Recent advances in the annulation of Morita–Baylis–Hillman adducts vol.16, pp.29, 2018, https://doi.org/10.1039/C8OB00929E
  10. Facile Synthesis of 3-Benzylidene-5-aryl-3H-furan-2-ones (V) Starting from the Baylis—Hillman Adducts (I). vol.38, pp.38, 2007, https://doi.org/10.1002/chin.200738106
  11. Expeditious Synthesis of 1,3,4-Trisubstituted Pyrazoles from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1841
  12. Synthesis of 2,4,5-Trisubstituted Pyrimidines from Baylis-Hillman Adducts and Amidines vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2505
  13. Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
  14. A General Cyclocarbonylation of Aryl Bromides and Triflates with Acetylenes: Palladium‐Catalyzed Synthesis of 3‐Alkylidenefuran‐2‐ones vol.17, pp.29, 2011, https://doi.org/10.1002/chem.201101083
  15. Phosphine‐Mediated Domino Benzannulation Strategy for the Construction of Highly Functionalized Multiaryl Skeletons vol.18, pp.24, 2012, https://doi.org/10.1002/chem.201200305
  16. Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-Enones Derived from Morita-Baylis-Hillman Adducts vol.34, pp.10, 2007, https://doi.org/10.5012/bkcs.2013.34.10.2915
  17. Allylic Phosphorus Ylides Directly Generated from Alcohols with Water as the Only Byproduct vol.21, pp.11, 2007, https://doi.org/10.1021/acs.orglett.9b01349
  18. Allylic Phosphorus Ylides Directly Generated from Alcohols with Water as the Only Byproduct vol.21, pp.11, 2007, https://doi.org/10.1021/acs.orglett.9b01349