References
- Bonhote, P.; Dias, A.-P.; Armand, M.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168-1178 https://doi.org/10.1021/ic951325x
- Welton, T. Chem. Rev. 1999, 99, 2071-2083 https://doi.org/10.1021/cr980032t
- Song, C. E.; Yoon, M. Y.; Choi, D. S. Bull. Korean Chem. Soc. 2005, 26, 1321-1330 https://doi.org/10.5012/bkcs.2005.26.9.1321
- Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354 https://doi.org/10.5012/bkcs.2006.27.3.345
- Kim, S. M.; Kang, Y. K.; Lee, K. S.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423-425 https://doi.org/10.5012/bkcs.2006.27.3.423
- Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965-967
- Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221-227 https://doi.org/10.1016/S0022-1139(99)00267-5
- Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem.2003, 120, 135-141 https://doi.org/10.1016/S0022-1139(02)00322-6
- Holbrey, J. D.; Seddon, K. R. J. Chem. Soc., Dalton Trans. 1999, 2133-2139
- Webber, A.; Blomgren, G. E. In Advances in Lithium-Ion Batteries; van Schalkwijk, W. A.; Scrosati, B., Eds.; Kluwer Academic/Plenum Publishers: New York, 2002; pp 185-232
- In Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley-Interscience: Hoboken, 2005; pp 173-223
- Garcia, B.; Lavallee, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583-4588. https://doi.org/10.1016/j.electacta.2004.04.041
- Shin, J.; Henderson, W. A.; Scaccia, S.; Prosini, P. P.; Passerini, S. J. Power Sources 2006, 156, 560-566 https://doi.org/10.1016/j.jpowsour.2005.06.026
- In Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley-Interscience: Hoboken, 2005; pp 173-223
- Ue, M.; Takeda, M.; Takahashi, T.; Takehara, M. Electrochem. Solid State Lett. 2002, 5, A119-A121 https://doi.org/10.1149/1.1472255
- Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2004, 6, 566-570 https://doi.org/10.1016/j.elecom.2004.04.005
- Sato, T.; Masuda, G.; Takagi, K. Electrochim. Acta 2004, 49, 3603-3611 https://doi.org/10.1016/j.electacta.2004.03.030
- Galinski, M.; Lewandowski, A.; Izabela Stepniak, I. Electrochim. Acta 2006, 51, 5567-5580 https://doi.org/10.1016/j.electacta.2006.03.016
- Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M. Chem. Commun. 2002, 2972-2973
- Jovanovski, V.; Stathatos, E.; Orel, B.; Lianos, P. Thin Solid Films 2006, 511-512, 634-637
- de Souza, R. F.; Padilha, J. C.; Goncalves, R. S.; Dupont, J. Electrochem. Commun. 2003, 5, 728-731 https://doi.org/10.1016/S1388-2481(03)00173-5
- Min, G.; Yim, T.; Lee, H. Y.; Huh, D. H.; Lee, E.; Mun, J.; Oh, S. M.; Kim, Y. G. Bull. Korean Chem. Soc. 2006, 27, 847-852 https://doi.org/10.5012/bkcs.2006.27.6.847
- MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. J. Phys. Chem. B 1999, 103, 4164-4170 https://doi.org/10.1021/jp984145s
- McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. Electrochim. Acta 2000, 45, 1271-1278 https://doi.org/10.1016/S0013-4686(99)00331-X
- Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594-598 https://doi.org/10.1016/S1388-2481(03)00137-1
- Barisci, J. N.; Wallace, G. G.; MacFarlane, D. R.; Baughman, R. H. Electrochem. Commun. 2004, 6, 22-27 https://doi.org/10.1016/j.elecom.2003.09.015
- Howlett, P. C.; Brack, N.; Hollenkamp, A. F.; Forsyth, M.; MacFarlane, D. R. J. Electrochem. Soc. 2006, 153, A595-A606
- Matsumoto, H.; Sakaebe, H.; Tatsumi, K. J. Power Sources 2005, 146, 45-50 https://doi.org/10.1016/j.jpowsour.2005.03.103
- Kimbonguila, A. M.; Boucida, S.; Guibe, F.; Loffet, A. Tetrahedron 1997, 53, 12525-12538 https://doi.org/10.1016/S0040-4020(97)00772-2
- Sun, J.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2003, 48, 1707-1711 https://doi.org/10.1016/S0013-4686(03)00141-5
- Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106-1120 https://doi.org/10.1002/cphc.200301017
- Lee, J. S.; Bae, J. Y.; Lee, H.; Quan, N. D.; Kim, H. S.; Kim, H. J. Ind. Eng. Chem. 2004, 10, 1086-1089
- Anthony, J. L.; Brennecke, J. F.; Holbrey, J. D.; Maginn, E. J.; Mantz, R. A.; Rogers, R. D.; Trulove, P. C.; Visser, A. E.; Welton, T. In Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.; Wiley-VCH Verlag: Weinheim, 2003; pp 41-126
- Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 686-771
- Lee, J.-T.; Lin, Y.-W.; Jan, Y.-S. J. Power Sources 2004, 132, 244-248 https://doi.org/10.1016/j.jpowsour.2004.01.045
Cited by
- Linear-Sweep Thermammetry Study on Corrosion Behavior of Al Current Collector in Ionic Liquid Solvent vol.13, pp.8, 2010, https://doi.org/10.1149/1.3432256
- Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives vol.40, pp.5, 2011, https://doi.org/10.1039/c0cs00081g
- Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure vol.28, pp.5, 2014, https://doi.org/10.1021/ef500264z
- Synthesis of Pyrrolidinium Salts Using a Triazine-based Reagent under Mild Conditions vol.43, pp.10, 2014, https://doi.org/10.1246/cl.140503
- The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode vol.18, pp.2, 2015, https://doi.org/10.5229/JKES.2015.18.2.51
- Electrochemical properties of organic electrolyte solutions containing 1-ethyl-3-methylimidazolium tetrafluoroborate salt vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1565-1
- Nickel-tungsten sulfide polyaromatic hydrocarbon hydrogenation nanocatalysts prepared in an ionic liquid vol.55, pp.1, 2015, https://doi.org/10.1134/S0965544115010120
- Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes vol.55, pp.5, 2015, https://doi.org/10.1002/ijch.201400181
- Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution vol.32, pp.13, 2016, https://doi.org/10.1021/acs.langmuir.6b00196
- Hydrofining of light cycle oil over in situ synthesized nickel–tungsten sulfide catalysts vol.56, pp.6, 2016, https://doi.org/10.1134/S0965544116060098
- Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy)butanoate anion vol.6, pp.9, 2016, https://doi.org/10.1039/C5RA23997D
- Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process vol.47, pp.1, 2017, https://doi.org/10.1007/s10800-016-1007-4
- -methylpyrrolidinium Bis(fluorosulfonyl)amide vol.43, pp.12, 2014, https://doi.org/10.1246/cl.140833
- Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries vol.6, pp.7, 2018, https://doi.org/10.1039/C7TA09330F
- Piperidinium ionic liquids as electrolyte solvents for sustained high temperature supercapacitor operation vol.54, pp.44, 2018, https://doi.org/10.1039/C8CC01093E
- Comparative Study on Surface Films from Ionic Liquids Containing Saturated and Unsaturated Substituent for LiCoO[sub 2] vol.157, pp.2, 2010, https://doi.org/10.1149/1.3265476
- Synthesis and Properties of Acyclic Ammonium-based Ionic Liquids with Allyl Substituents as Electrolytes vol.14, pp.5, 2007, https://doi.org/10.3390/molecules14051840
- Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3190
- Solvent effects of ionic liquids: investigation of ferrocenes as electrochemical probes vol.24, pp.4, 2011, https://doi.org/10.1002/poc.1759
- Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids vol.303, pp.1, 2007, https://doi.org/10.1016/j.fluid.2010.12.008
- Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature vol.158, pp.5, 2011, https://doi.org/10.1149/1.3560205
- Electrochemical studies and self diffusion coefficients in cyclic ammonium based ionic liquids with allyl substituents vol.56, pp.9, 2007, https://doi.org/10.1016/j.electacta.2011.01.040
- N-Allyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide-A film forming ionic liquid for graphite anode of Li-ion batteries vol.71, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.03.088
- Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO 2 for advanced, safe lithium-ion batteries vol.4, pp.None, 2014, https://doi.org/10.1038/srep05802
- Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode vol.16, pp.1, 2007, https://doi.org/10.5714/cl.2015.16.1.051
- Thermal stability of imidazolium-based ionic liquids vol.4, pp.1, 2016, https://doi.org/10.17721/fujcv4i1p51-64
- Physical and electrochemical properties of lithium bis(oxalate)borate-organic mixed electrolytes in Li-ion batteries vol.204, pp.None, 2007, https://doi.org/10.1016/j.electacta.2016.03.127
- Effect of 1-allyl-1-methylpyrrolidinium chloride addition to ethylmagnesium bromide electrolyte on a rechargeable magnesium battery vol.231, pp.None, 2007, https://doi.org/10.1016/j.electacta.2017.02.062
- 상온 이온성 액체로 활성화시킨 고온 작동 가능한 Nafion 고분자 전해질 vol.42, pp.4, 2007, https://doi.org/10.7317/pk.2018.42.4.682
- Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives vol.4, pp.4, 2007, https://doi.org/10.1515/psr-2017-0115
- Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives vol.4, pp.4, 2007, https://doi.org/10.1515/psr-2017-0115
- Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092721
- Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries vol.12, pp.4, 2007, https://doi.org/10.33961/jecst.2021.00493