DOI QR코드

DOI QR Code

Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents

  • Yim, Tae-Eun (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Lee, Hyun-Yeong (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Hyo-Jin (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Mun, Jun-Young (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Sang-Mi (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung-M. (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Young-Gyu (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University)
  • Published : 2007.09.20

Abstract

New pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide (TFSI) ionic liquids (ILs) having allyl substituents were synthesized and characterized. All of them are liquid at room temperature and stable up to 300 oC. The pyrrolidinium-based ILs showed better conductivities and lower viscosities than the corresponding piperidinium-based ILs. Among them, 1-allyl-1-methylpyrrolidinium TFSI showed the lowest viscosity of 52 cP, the highest conductivity of 5.7 mS cm?1, and the most negative cathodic voltage window of ?3.2 V (vs. Fc/Fc+) on a platinum electrode, which are the improved results compared to the corresponding analogue having a saturated substituent, 1-methyl-1-propylpyrrolidinium TFSI.

Keywords

References

  1. Bonhote, P.; Dias, A.-P.; Armand, M.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168-1178 https://doi.org/10.1021/ic951325x
  2. Welton, T. Chem. Rev. 1999, 99, 2071-2083 https://doi.org/10.1021/cr980032t
  3. Song, C. E.; Yoon, M. Y.; Choi, D. S. Bull. Korean Chem. Soc. 2005, 26, 1321-1330 https://doi.org/10.5012/bkcs.2005.26.9.1321
  4. Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354 https://doi.org/10.5012/bkcs.2006.27.3.345
  5. Kim, S. M.; Kang, Y. K.; Lee, K. S.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423-425 https://doi.org/10.5012/bkcs.2006.27.3.423
  6. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965-967
  7. Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221-227 https://doi.org/10.1016/S0022-1139(99)00267-5
  8. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem.2003, 120, 135-141 https://doi.org/10.1016/S0022-1139(02)00322-6
  9. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc., Dalton Trans. 1999, 2133-2139
  10. Webber, A.; Blomgren, G. E. In Advances in Lithium-Ion Batteries; van Schalkwijk, W. A.; Scrosati, B., Eds.; Kluwer Academic/Plenum Publishers: New York, 2002; pp 185-232
  11. In Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley-Interscience: Hoboken, 2005; pp 173-223
  12. Garcia, B.; Lavallee, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583-4588. https://doi.org/10.1016/j.electacta.2004.04.041
  13. Shin, J.; Henderson, W. A.; Scaccia, S.; Prosini, P. P.; Passerini, S. J. Power Sources 2006, 156, 560-566 https://doi.org/10.1016/j.jpowsour.2005.06.026
  14. In Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley-Interscience: Hoboken, 2005; pp 173-223
  15. Ue, M.; Takeda, M.; Takahashi, T.; Takehara, M. Electrochem. Solid State Lett. 2002, 5, A119-A121 https://doi.org/10.1149/1.1472255
  16. Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2004, 6, 566-570 https://doi.org/10.1016/j.elecom.2004.04.005
  17. Sato, T.; Masuda, G.; Takagi, K. Electrochim. Acta 2004, 49, 3603-3611 https://doi.org/10.1016/j.electacta.2004.03.030
  18. Galinski, M.; Lewandowski, A.; Izabela Stepniak, I. Electrochim. Acta 2006, 51, 5567-5580 https://doi.org/10.1016/j.electacta.2006.03.016
  19. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M. Chem. Commun. 2002, 2972-2973
  20. Jovanovski, V.; Stathatos, E.; Orel, B.; Lianos, P. Thin Solid Films 2006, 511-512, 634-637
  21. de Souza, R. F.; Padilha, J. C.; Goncalves, R. S.; Dupont, J. Electrochem. Commun. 2003, 5, 728-731 https://doi.org/10.1016/S1388-2481(03)00173-5
  22. Min, G.; Yim, T.; Lee, H. Y.; Huh, D. H.; Lee, E.; Mun, J.; Oh, S. M.; Kim, Y. G. Bull. Korean Chem. Soc. 2006, 27, 847-852 https://doi.org/10.5012/bkcs.2006.27.6.847
  23. MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. J. Phys. Chem. B 1999, 103, 4164-4170 https://doi.org/10.1021/jp984145s
  24. McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. Electrochim. Acta 2000, 45, 1271-1278 https://doi.org/10.1016/S0013-4686(99)00331-X
  25. Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594-598 https://doi.org/10.1016/S1388-2481(03)00137-1
  26. Barisci, J. N.; Wallace, G. G.; MacFarlane, D. R.; Baughman, R. H. Electrochem. Commun. 2004, 6, 22-27 https://doi.org/10.1016/j.elecom.2003.09.015
  27. Howlett, P. C.; Brack, N.; Hollenkamp, A. F.; Forsyth, M.; MacFarlane, D. R. J. Electrochem. Soc. 2006, 153, A595-A606
  28. Matsumoto, H.; Sakaebe, H.; Tatsumi, K. J. Power Sources 2005, 146, 45-50 https://doi.org/10.1016/j.jpowsour.2005.03.103
  29. Kimbonguila, A. M.; Boucida, S.; Guibe, F.; Loffet, A. Tetrahedron 1997, 53, 12525-12538 https://doi.org/10.1016/S0040-4020(97)00772-2
  30. Sun, J.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2003, 48, 1707-1711 https://doi.org/10.1016/S0013-4686(03)00141-5
  31. Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106-1120 https://doi.org/10.1002/cphc.200301017
  32. Lee, J. S.; Bae, J. Y.; Lee, H.; Quan, N. D.; Kim, H. S.; Kim, H. J. Ind. Eng. Chem. 2004, 10, 1086-1089
  33. Anthony, J. L.; Brennecke, J. F.; Holbrey, J. D.; Maginn, E. J.; Mantz, R. A.; Rogers, R. D.; Trulove, P. C.; Visser, A. E.; Welton, T. In Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.; Wiley-VCH Verlag: Weinheim, 2003; pp 41-126
  34. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 686-771
  35. Lee, J.-T.; Lin, Y.-W.; Jan, Y.-S. J. Power Sources 2004, 132, 244-248 https://doi.org/10.1016/j.jpowsour.2004.01.045

Cited by

  1. Linear-Sweep Thermammetry Study on Corrosion Behavior of Al Current Collector in Ionic Liquid Solvent vol.13, pp.8, 2010, https://doi.org/10.1149/1.3432256
  2. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives vol.40, pp.5, 2011, https://doi.org/10.1039/c0cs00081g
  3. Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure vol.28, pp.5, 2014, https://doi.org/10.1021/ef500264z
  4. Synthesis of Pyrrolidinium Salts Using a Triazine-based Reagent under Mild Conditions vol.43, pp.10, 2014, https://doi.org/10.1246/cl.140503
  5. The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode vol.18, pp.2, 2015, https://doi.org/10.5229/JKES.2015.18.2.51
  6. Electrochemical properties of organic electrolyte solutions containing 1-ethyl-3-methylimidazolium tetrafluoroborate salt vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1565-1
  7. Nickel-tungsten sulfide polyaromatic hydrocarbon hydrogenation nanocatalysts prepared in an ionic liquid vol.55, pp.1, 2015, https://doi.org/10.1134/S0965544115010120
  8. Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes vol.55, pp.5, 2015, https://doi.org/10.1002/ijch.201400181
  9. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution vol.32, pp.13, 2016, https://doi.org/10.1021/acs.langmuir.6b00196
  10. Hydrofining of light cycle oil over in situ synthesized nickel–tungsten sulfide catalysts vol.56, pp.6, 2016, https://doi.org/10.1134/S0965544116060098
  11. Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy)butanoate anion vol.6, pp.9, 2016, https://doi.org/10.1039/C5RA23997D
  12. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process vol.47, pp.1, 2017, https://doi.org/10.1007/s10800-016-1007-4
  13. -methylpyrrolidinium Bis(fluorosulfonyl)amide vol.43, pp.12, 2014, https://doi.org/10.1246/cl.140833
  14. Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries vol.6, pp.7, 2018, https://doi.org/10.1039/C7TA09330F
  15. Piperidinium ionic liquids as electrolyte solvents for sustained high temperature supercapacitor operation vol.54, pp.44, 2018, https://doi.org/10.1039/C8CC01093E
  16. Comparative Study on Surface Films from Ionic Liquids Containing Saturated and Unsaturated Substituent for LiCoO[sub 2] vol.157, pp.2, 2010, https://doi.org/10.1149/1.3265476
  17. Synthesis and Properties of Acyclic Ammonium-based Ionic Liquids with Allyl Substituents as Electrolytes vol.14, pp.5, 2007, https://doi.org/10.3390/molecules14051840
  18. Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3190
  19. Solvent effects of ionic liquids: investigation of ferrocenes as electrochemical probes vol.24, pp.4, 2011, https://doi.org/10.1002/poc.1759
  20. Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids vol.303, pp.1, 2007, https://doi.org/10.1016/j.fluid.2010.12.008
  21. Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature vol.158, pp.5, 2011, https://doi.org/10.1149/1.3560205
  22. Electrochemical studies and self diffusion coefficients in cyclic ammonium based ionic liquids with allyl substituents vol.56, pp.9, 2007, https://doi.org/10.1016/j.electacta.2011.01.040
  23. N-Allyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide-A film forming ionic liquid for graphite anode of Li-ion batteries vol.71, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.03.088
  24. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO 2 for advanced, safe lithium-ion batteries vol.4, pp.None, 2014, https://doi.org/10.1038/srep05802
  25. Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode vol.16, pp.1, 2007, https://doi.org/10.5714/cl.2015.16.1.051
  26. Thermal stability of imidazolium-based ionic liquids vol.4, pp.1, 2016, https://doi.org/10.17721/fujcv4i1p51-64
  27. Physical and electrochemical properties of lithium bis(oxalate)borate-organic mixed electrolytes in Li-ion batteries vol.204, pp.None, 2007, https://doi.org/10.1016/j.electacta.2016.03.127
  28. Effect of 1-allyl-1-methylpyrrolidinium chloride addition to ethylmagnesium bromide electrolyte on a rechargeable magnesium battery vol.231, pp.None, 2007, https://doi.org/10.1016/j.electacta.2017.02.062
  29. 상온 이온성 액체로 활성화시킨 고온 작동 가능한 Nafion 고분자 전해질 vol.42, pp.4, 2007, https://doi.org/10.7317/pk.2018.42.4.682
  30. Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives vol.4, pp.4, 2007, https://doi.org/10.1515/psr-2017-0115
  31. Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives vol.4, pp.4, 2007, https://doi.org/10.1515/psr-2017-0115
  32. Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092721
  33. Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries vol.12, pp.4, 2007, https://doi.org/10.33961/jecst.2021.00493