References
- Janecki, T.; Blaszczyk, E.; Studzian, K.; Janecka, A.; Krajewska, U.; Rozalski, M. J. Med. Chem. 2005, 48, 3516 https://doi.org/10.1021/jm048970a
- Qiao, L.; Wang, S.; George, C.; Lewin, N. E.; Blumberg, P. M.; Kozikowski, A. P. J. Am. Chem. Soc. 1998, 120, 6629 https://doi.org/10.1021/ja980513u
- Murata, K.; Kaneko, S.; Kitazume, T. Bioorg. Med. Chem. Lett. 1993, 3, 2685 https://doi.org/10.1016/S0960-894X(01)80742-3
- Belaud, C.; Roussakis, C.; Letourneux, Y.; El Alami, N.; Villieras, J. Synth. Commun. 1985, 15, 1233 https://doi.org/10.1080/00397918508077271
- Choudhury, P. K.; Foubelo, F.; Yus, M. J. Org. Chem. 1999, 64, 3376 https://doi.org/10.1021/jo982311m
- Nyzam, V.; Belaud, C.; Zammattio, F.; Villieras, J. Tetrahedron: Asymmetry 1996, 7, 1835 https://doi.org/10.1016/0957-4166(96)00219-4
- Lee, E.; Kang, T. S. Bull. Korean Chem. Soc. 1993, 14, 431
- Dembele, Y. A.; Belaud, C.; Villieras, J. Tetrahedron: Asymmetry 1992, 3, 511 https://doi.org/10.1016/S0957-4166(00)80253-0
- Blaszczyk, E.; Krawczyk, H.; Janecki, T. Synlett 2004, 2685
- Chataigner, I.; Zammattio, F.; Lebreton, J.; Villieras, J. Synlett 1998, 275
- El Alami, N.; Belaud, C.; Villieras, J. Tetrahedron Lett. 1987, 28, 59 https://doi.org/10.1016/S0040-4039(00)95648-X
- Patra, R.; Maiti, S. B.; Chatterjee, A. Tetrahedron Lett. 1991, 32, 1363 https://doi.org/10.1016/S0040-4039(00)79668-7
- El Alami, N.; Belaud, C.; Villieras, J. Synth. Commun. 1988, 18, 2073 https://doi.org/10.1080/00397918808068276
- Tanaka, K.; Yoda, H.; Kaji, A. Synthesis 1985, 84
- Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621 https://doi.org/10.1016/j.tetlet.2003.12.133
- Beji, F.; Lebreton, J.; Villieras, J.; Amri, H. Tetrahedron 2001, 57, 9959 https://doi.org/10.1016/S0040-4020(01)01018-3
- Tarnchompoo, B.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1987, 28, 6675 https://doi.org/10.1016/S0040-4039(00)96943-0
- Henin, F.; Muzart, J.; Pete, J.-P. Tetrahedron Lett. 1986, 27, 6339
- Mori, M.; Washioka, Y.; Urayama, T.; Yoshiura, K.; Chiba, K.; Ban, Y. J. Org. Chem. 1983, 48, 4058 https://doi.org/10.1021/jo00170a037
- Lee, M. J.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355 https://doi.org/10.1016/j.tetlet.2005.12.032
- Lee, M. J.; Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1833 https://doi.org/10.1016/j.tetlet.2005.12.134
- Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799 https://doi.org/10.1016/j.tetlet.2005.10.034
- Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859 https://doi.org/10.1016/j.tetlet.2005.05.057
- Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46, 5387 https://doi.org/10.1016/j.tetlet.2005.05.149
- Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493 https://doi.org/10.1016/j.tet.2004.11.082
- Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Tetrahedron 2006, 62, 3128 https://doi.org/10.1016/j.tet.2006.01.028
- Kim, S. C.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3463 https://doi.org/10.1016/j.tetlet.2006.03.074
- Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron 2006, 62, 4052 https://doi.org/10.1016/j.tet.2006.02.038
- Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949 https://doi.org/10.1016/j.tetlet.2004.07.070
- Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627 https://doi.org/10.2174/1385272023374094
- Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481 https://doi.org/10.5012/bkcs.2005.26.10.1481
- Kim, J. M.; Im, Y. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 657 https://doi.org/10.5012/bkcs.2002.23.5.657
- Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 140 https://doi.org/10.5012/bkcs.2006.27.1.140
- Lee, K. Y.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 319 https://doi.org/10.5012/bkcs.2006.27.2.319
- Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977 https://doi.org/10.1016/j.tetlet.2005.11.142
- Lee, K. Y.; Seo, J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3913 https://doi.org/10.1016/j.tetlet.2006.03.167
- Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971 https://doi.org/10.1016/S0040-4020(99)00326-9
- Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281 https://doi.org/10.5012/bkcs.2005.26.8.1281
- Lee, H. S.; Kim, S. J.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27 https://doi.org/10.5012/bkcs.2006.27.7.1063
Cited by
- Highly Enantioselective and Regioselective Substitution of Morita–Baylis–Hillman Carbonates with Nitroalkanes vol.13, pp.22, 2011, https://doi.org/10.1021/ol202555v
- An Easy Access to Carbazolones and 2,3-Disubstituted Indoles vol.2011, pp.12, 2011, https://doi.org/10.1002/ejoc.201001357
- Recent Advances in the Synthesis of α-Alkylidene-Substituted δ-Lactones, γ-Lactams and δ-Lactams vol.2011, pp.15, 2011, https://doi.org/10.1002/ejoc.201001486
- Facile Synthesis of 5-Alkylidene-1,5-dihydropyrrol-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1337
- An Expedient Synthesis of Cinnamyl Fluorides from Morita-Baylis-Hillman Adducts vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.993
- Tin Powder-Promoted One-Pot Construction of α-Methylene-γ-lactams and Spirolactams from Aldehydes or Ketones, Acylhydrazines, and 2-(Bromomethyl)acrylate vol.80, pp.24, 2015, https://doi.org/10.1021/acs.joc.5b02154
- Electrophilic Amide Allylation of 3-Heterosubstituted Oxindoles: A Route to Spirocyclic 2-Oxindoles Containing the α-Methylene-γ-butyrolactam Structure vol.2018, pp.15, 2018, https://doi.org/10.1002/ejoc.201800084
- Synthesis of β,γ-Disubstituted α-Methylene-γ-butyrolactams Starting from the Baylis—Hillman Adducts. vol.38, pp.21, 2007, https://doi.org/10.1002/chin.200721091
- An Expeditious Synthesis of Substituted Pyrrolidines and Tetrahydrofurans Starting from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1844
- Eschenmoser-Claisen Rearrangement of Baylis-Hillman Adducts vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2093
- Facile Synthesis of 3-Benzylidene-5-aryl-3H-furan-2-ones Starting from the Baylis-Hillman Adducts vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.719
- Facile Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles from Baylis-Hillman Adducts vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1605
- An Expedient Synthesis of β-Phenyl Substituted Baylis-Hillman and Aza-Baylis-Hillman Adducts vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.265
- Synthesis of Poly-Substituted Phenolds from Baylis-Hillman Adducts and 1,3-Dinitroalkanes vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.701
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- A convenient synthesis and cytotoxic evaluation of N-unsubstituted α-methylene-γ-lactams vol.64, pp.27, 2007, https://doi.org/10.1016/j.tet.2008.04.090
- Pd-Mediated Cross-Coupling Reactions between the Bromide of Baylis-Hillman Adduct and Organostannanes vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.726
- Novel synthesis of indolylquinoline derivatives via the C-alkylation of Baylis–Hillman adducts vol.50, pp.28, 2007, https://doi.org/10.1016/j.tetlet.2009.04.064
- An Unprecedented Route for the Synthesis of 3,3′-Biindoles by Reductive Cyclization of 3-[2-Nitro-1-(2-nitrophenyl)ethyl]-1H-indoles Mediated by Iron/Acetic Acid vol.2010, pp.20, 2007, https://doi.org/10.1002/ejoc.201000276
- An Efficient Synthesis of Functionalized 1,6-Dienes from Baylis-Hillman Adducts via a Pd-Catalyzed Decarboxylative Protonation Protocol vol.31, pp.7, 2007, https://doi.org/10.5012/bkcs.2010.31.7.2057
- Iron/acetic acid-mediated carbon degradation: a facile route for the synthesis of quinoline derivatives vol.51, pp.40, 2010, https://doi.org/10.1016/j.tetlet.2010.07.063
- A simple and facile route for the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones via reductive cyclization of 2-(2-nitrophenoxy)acetonitrile adducts in the presence of Fe/acetic acid vol.67, pp.6, 2011, https://doi.org/10.1016/j.tet.2010.11.095
- One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2007, https://doi.org/10.5012/bkcs.2012.33.6.2079
- Iron/acetic acid mediated intermolecular tandem C-C and C-N bond formation: an easy access to acridinone and quinoline derivatives vol.4, pp.71, 2014, https://doi.org/10.1039/c4ra06410k
- An Expedient Approach for the Synthesis of 1-Alkyl-4-propionylpyrrolidin-2-ones vol.44, pp.1, 2007, https://doi.org/10.1080/00397911.2013.786091