DOI QR코드

DOI QR Code

A Comparative Analysis of Pseudophase Ion-Exchange (PIE) Model and Berezin Pseudophase (BPP) Model: Analysis of Kinetic Data for Ionic Micellar-mediated Semi-ionic Bimolecular Reaction

  • Cheong, May-Ye (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Ariffin, Azhar (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Khan, M.Niyaz (Department of Chemistry, Faculty of Science, University of Malaya)
  • Published : 2007.07.20

Abstract

Pseudo-first-order rate constants (kobs) for the reaction of N-benzylphthalimide (NBPT) with HO- have been determined at 2.0 × 10?4 M NBPT, 1.0 × 10?3 and 2.0 × 10?3 M NaOH as well as varying concentrations of cetyltrimethylammonium bromide ([CTABr]T = 0.0-1.7 × 10?1 M). The effects of [CTABr]T ? CMC (with CMC representing the critical micelle concentration of CTABr) on kobs have been analyzed in terms of Berezin's pseudophase (BPP) model and pseudophase ion-exchange (PIE) model. Although both models give the best observed data fit with least-squares values not significantly different from each other, the calculated values of KS from BPP model appear to be more reliable compared to those from PIE model because the values of KS from BPP model are similar to the corresponding KS values determined spectrophotometrically.

Keywords

References

  1. Romsted, L. R.; Cordes, E. H. J. Am. Chem. Soc. 1968, 90, 4404 https://doi.org/10.1021/ja01018a036
  2. Dunlap, R. B.; Cordes, E. H. J. Am. Chem. Soc. 1968, 90, 4395 https://doi.org/10.1021/ja01018a035
  3. Bunton, C. A.; Robinson, L. J. Org. Chem. 1969, 34, 773, 780 https://doi.org/10.1021/jo01256a003
  4. Romsted, L. S. In Surfactants in Solution; Mittal, K. L.; Lindman, B., Eds.; Plenum Press: New York, 1984; vol. 2, p 1015
  5. Bunton, C. A.; Savelli, G. Adv. Phys. Org. Chem. 1986, 22, 213
  6. Bunton, C. A. In Surfactants in Solution; Mittal, K. L.; Shah, D. O., Eds.; Plenum Press: New York, 1991; vol. 11, p 17
  7. Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Acc. Chem. Res. 1991, 24, 357 https://doi.org/10.1021/ar00012a001
  8. Zakharova, L.; Valeeva, F.; Zakharov, A.; Ibragimova, A.; Kudryavtseva, L.; Harlampidi, H. J. Colloid Interface Sci. 2003, 263, 597 https://doi.org/10.1016/S0021-9797(03)00343-6
  9. Cheong, M. Y.; Ariffin, A.; Khan, M. N. Indian J. Chem. 2005; 44A, 2055
  10. Khan, M. N. J. Chem. Soc. Perkin Trans. 2 1990, 435
  11. Berezin, I. V.; Martinek, K.; Yatsimirski, A. K. Russ. Chem. Rev. (Usp. Khim.) 1973, 42, 787 https://doi.org/10.1070/RC1973v042n10ABEH002744
  12. Martinek, K.; Yatsimirski, A. K.; Levashov, A. V.; Berezin, I. V. In Micellization, Solubilization, and Microemulsions; Mittal, K. L., Ed.; Plenum Press: New York, 1977; vol. 2, p 489
  13. Romsted, L. S. In Micellization, Solubilization, and Microemulsions; Mittal, K. L., Ed.; Plenum Press: New York, 1977; vol. 2, p 509
  14. Tada, E. D.; Ouarti, N.; Silva, P. L.; Blagoeva, I. B.; El Seoud, O. A.; Ruasse, M.-F. Langmuir 2003, 19, 10666 https://doi.org/10.1021/la030186q
  15. Fendler, J. H. Membrane Mimetic Chemistry; Wiley: New York, 1982
  16. Khan, M. N. In Micellar Catalysis, Surfactant Science Series; CRC Press LLC: Boca Raton Fla., London and New York, 2006; vol. 133
  17. Bunton, C. A. Encyclopedia of Surface and Colloid Science; Marcel Dekker, Inc.: New York, 2002; p 980
  18. Yunes, S. J.; Gillitt, N. D.; Bunton, C. A. J. Colloid Interface Sci. 2005, 281, 482 https://doi.org/10.1016/j.jcis.2004.08.065
  19. Germani, R.; Savelli, G.; Romeo, T.; Spreti, N.; Cerichelli, G.; Bunton, C. A. Langmuir 1993, 9, 55 https://doi.org/10.1021/la00025a015
  20. Khan, M. N.; Ismail, E. J. Chem. Soc. Perkin Trans. 2 2001, 1346
  21. Blasko, A.; Bunton, C. A.; Wright, S. J. Phys. Chem. 1993, 97, 5435 https://doi.org/10.1021/j100122a041
  22. Khan, M. N.; Arifin, Z. J. Chem. Soc. Perkin Trans. 2 2000, 2503

Cited by

  1. Kinetics of hydrolysis of procaine in aqueous and micellar media vol.45, pp.1, 2013, https://doi.org/10.1002/kin.20735
  2. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters vol.117, pp.14, 2013, https://doi.org/10.1021/jp310010q
  3. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles vol.13, pp.10, 2015, https://doi.org/10.1039/C4OB02067G
  4. UV-Spectral Study on the Effects of Inert Salts on the Nonionic Micellar Solubilization of Phenyl Salicylate in the Absence and Presence of a Cationic Surfactant Under Alkaline Aqueous Medium vol.29, pp.6, 2007, https://doi.org/10.1080/01932690701783614
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Evidence of co-operativity in the pre-micellar region in the hydrolytic cleavage of phenyl salicylate in the presence of cationic surfactants of CTAB, TTAB and CPC vol.396, pp.None, 2007, https://doi.org/10.1016/j.molcata.2014.09.026
  7. Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review vol.43, pp.1, 2007, https://doi.org/10.3184/146867818x15066862094905
  8. Kinetics and Mechanism of Alkaline Hydrolysis of N-(o-Aminophenyl)Phthalimide in the Presence and Absence of Cationic Micelles and Sodium Salts of Aliphatic Acids vol.43, pp.2, 2007, https://doi.org/10.3184/146867818x15161889114510
  9. 4,5‐Dinitrosulfonefluorescein and related dyes: Kinetics of reversible rupture of the pyran ring and their interaction with lysozyme vol.137, pp.6, 2007, https://doi.org/10.1111/cote.12565