DOI QR코드

DOI QR Code

Preparation, Characterization and Low Frequency a.c. Conduction of Polypyrrole-Lead Titanate Composites

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Choi, Young-Min (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Park, Hyun-Tae (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Lee, Jae-Wook (Department of Chemistry, Dong-A University) ;
  • Revanasiddappa, M. (Department of Chemistry, PES School of Engineering) ;
  • Raghavendra, S.C. (Department of Chemistry, PES School of Engineering) ;
  • Khasim, S. (Department of Chemistry, PES School of Engineering) ;
  • Vishnuvardhan, T.K. (Department of Chemistry, Gulbarga University)
  • Published : 2007.07.20

Abstract

Conducting Polypyrrole-lead titanate (PPy/PbTiO3) composites have been prepared by in situ deposition technique by placing different wt.% of fine grade powder of PbTiO3 (10, 20, 30, 40, and 50%) during polymerization of pyrrole. The composites formed were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), and these data indicate that PbTiO3 particles are dominating with an increase in crystallinity as well as thermal stability of the composites. The results on the low frequency dielectric studies which are obtained in the form of pressed pellet state are interpreted in terms of Maxwell Wagner polarization, which are responsible for the dielectric relaxation mechanism and frequency dependence of conductivity.

Keywords

References

  1. Novak, P.; Muller, K.; Santhanam, K. S. V.; Hass, O. Chem. Rev. 1997, 97, 207 https://doi.org/10.1021/cr941181o
  2. Fusalba, F.; Belanger, D. J. Mater. Res. 1999, 14(5), 1805 https://doi.org/10.1557/JMR.1999.0244
  3. Wu, C. G.; Degroot, D. C.; Marcy, H. O.; Schinder, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hipro, W.; Kanatzidis, M. G. Chem. Mater. 1996, 8, 1992 https://doi.org/10.1021/cm9600236
  4. Kerr, T. A.; Wu, H.; Nazar, L. F. Chem. Mater. 2005, 8, 1996
  5. Wang, L.; Schindler, J.; Thomas, J. A.; Kannewurf, C. R.; Kantzidis, M. G. Chem. Mater. 1995, 7, 1753 https://doi.org/10.1021/cm00058a001
  6. Wan, M.; Shou, W.; Li, J. Synth. Met. 1996, 78, 27 https://doi.org/10.1016/0379-6779(95)03562-1
  7. Ahn, S.; Hupp, J. T. Bull. Korean Chem. Soc. 2006, 27(9), 1497 https://doi.org/10.5012/bkcs.2006.27.9.1497
  8. Gemeay, A. H.; Nishiyama, H.; Kuwabata, S.; Yoneyama, H. J. Electrochem. Soc. 1999, 142, 226 and references therein
  9. Girad, F.; Ye, S.; Laperriere, G.; Belanger, D. J. Electroanal. Chem. 1992, 334, 35 https://doi.org/10.1016/0022-0728(92)80559-M
  10. Maxwell, C. J. A Treatise on Electricity and Magnetism; Oxford University Press: Oxford, 1998; Vol. 1, p 285
  11. Belelz, F. A.; Zarbin, A. J. G. J. Braz. Chem. Soc. 2001, 12(4), 542 https://doi.org/10.1590/S0103-50532001000400017
  12. Chwang, C. P.; Liu, C. D.; Huang, S. W.; Chao, D. Y.; Lee, S. N. Synth. Met. 2004, 142, 275 https://doi.org/10.1016/j.synthmet.2003.09.012
  13. de Azevedo, W. M.; de Souza, J. M.; De Melo, J. V. Synth. Met. 2001, 124, 295 https://doi.org/10.1016/S0379-6779(01)00364-2
  14. Suri, K.; Annapoorni, S.; Tandon, R. P.; Mehra, N. C. Synth. Met. 2002, 126, 137 https://doi.org/10.1016/S0379-6779(01)00491-X
  15. Bhattacharyya, S.; Saha, S. K.; Mandal, T. M.; Mandal, B. M.; Chakravorty, D.; Goswami, K. J. J. Appl. Phys. 2001, 89, 5547 https://doi.org/10.1063/1.1356435
  16. Kalinichev, A. G.; Bass, J. D. J. Mat. Res. 1997, 12(10), 2623 https://doi.org/10.1557/JMR.1997.0349
  17. Patil, S. F.; Bedekar, A. G.; Agashe, C. Mater. Lett. 1992, 14, 307 https://doi.org/10.1016/0167-577X(92)90043-J
  18. Vishnuvardhan, T. K.; Kulkarni, V. R.; Basavaraja, C.; Raghavendra, S. C. Bull. Mater. Sci. 2006, 29(1), 77 https://doi.org/10.1007/BF02709360
  19. Chil-Hoon Doh; Seong II Kim; Ki-Young Jeong; Bong-Soo Jin; Kay Hyeok An; Byung Chul Min; Seong-In Moon; Mun-Soo Yun, Bull. Korean Chem. Soc. 2006, 27(8), 1175 https://doi.org/10.5012/bkcs.2006.27.8.1175
  20. Cohen, R. E. Nature 1992, 358, 136 https://doi.org/10.1038/358136a0

Cited by

  1. Dielectric Properties of Φ(BZT-BCT)-(1−Φ) Epoxy Composites with 0-3 Connectivity vol.2013, pp.1687-8124, 2013, https://doi.org/10.1155/2013/858406
  2. Binary doped polypyrrole and polypyrrole/boron nitride nanocomposites: preparation, characterization and application in detection of liquefied petroleum gas leaks vol.5, pp.128, 2015, https://doi.org/10.1039/C5RA21173E
  3. Synthesis and characterization of PTP/K[Fe(CN)3(OH)(en)] nanocomposite: study of thermal, electrical and photocatalytic properties vol.27, pp.7, 2016, https://doi.org/10.1007/s10854-016-4642-y
  4. Microstructural and microwave shielding characteristics of water-soluble polypyrrole-polyvinyl alcohol-graphite oxide core-shell nanocomposites vol.33, pp.9, 2012, https://doi.org/10.1002/pc.22286
  5. Biological templating of polyaniline and polypyrrole using E. coli vol.18, pp.3, 2010, https://doi.org/10.1007/s13233-010-0305-7
  6. Synthesis and characterization of conducting polypyrrole-polymannuronate nanocomposites vol.17, pp.2, 2010, https://doi.org/10.1007/s10965-009-9309-4
  7. The Study of DC Conductivity for Polyaniline-polymannuronate Nano Composites vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2423
  8. Microscopic Studies of Polyaniline-poly-N-isopropylacrylamide/Alumina Composites Containing Dodecylbenzene Sulfonic Acid vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1699
  9. Transport Properties of Polypyrrole Films Doped with Sulphonic Acids vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2701
  10. Morphology of the Conducting Poly-N-vinylcarbazole-coated Silica Gel Nanocomposites vol.31, pp.2, 2007, https://doi.org/10.5012/bkcs.2010.31.02.298
  11. Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIR-ATR and dielectric spectroscopic characterization of composite thin films vol.160, pp.11, 2007, https://doi.org/10.1016/j.synthmet.2010.03.007
  12. Thermally Stable Polypyrrole/Hematite Composites with Tunable Dielectric and Magnetic Properties vol.61, pp.1, 2019, https://doi.org/10.1134/s0965545x19010024
  13. Exploring the characteristics of SnO2 nanoparticles doped organic blend for low cost nanoelectronics applications vol.24, pp.4, 2007, https://doi.org/10.15407/spqeo24.04.472