DOI QR코드

DOI QR Code

Theoretical Analysis and Prediction of Catalysts for Oxidative Decarboxylation of Melanin-Concentrating Hormone

  • Kim, Min-Gyum (Department of Chemistry, Seoul National University) ;
  • Kim, Myoung-Soon (Department of Chemistry, Seoul National University) ;
  • Park, Hwang-Seo (Department of Bioscience and Biotechnology, Sejong University) ;
  • Lee, Sang-Youb (Department of Chemistry, Seoul National University) ;
  • Suh, Jung-Hun (Department of Chemistry, Seoul National University)
  • Published : 2007.07.20

Abstract

In a previous study, a catalyst (A) was discovered for oxidative decarboxylation of melanin-concentrating hormone (MCH). To explain the catalytic action and to predict the structure of a new catalyst with improved activity, docking simulations were carried out for the complex formed between A and MCH. The simulations suggested that the three terminal groups of A form a hydrophobic pocket and that van der Waals interactions between the hydrophobic pocket and MCH play a role in stabilizing the MCH-A complex. Consequently, a new catalyst (B) was designed and synthesized in expectation of improved catalytic activity resulting from enhanced van der Waals interactions. The new catalyst, however, showed slightly lower catalytic activity. Lack of the accurate solution structure of MCH may be one of the factors associated with difficulties in prediction of improvement in catalytic activity by purely theoretical means. The results, however, revealed that variation of the acyl portion of the hydroxyproline portion may lead to improved catalysts.

Keywords

References

  1. Kim, M.-s.; Jeon, J. W.; Suh, J. J. Biol. Inorg. Chem. 2005, 10, 364-372 https://doi.org/10.1007/s00775-005-0646-4
  2. Angiotensin-Converting Enzyme Inhibitors: Scientific Basis for Clinical Use, 2nd ed.; Opie, L. H., Ed.; Wiley: New York, 1994
  3. Touyz, R. M.; Schifferin, E. L. Pharmacol. Rev. 2000, 52, 639- 672
  4. Renin Angiotensin System and the Heart; De Mello, W. C., Ed.; Wiley: New York, 2004
  5. Marsh, D. J.; Weingarth, D. T.; Novi, D. E.; Chen, H. Y.; Trumbauer, M. E.; Chen, A. S.; Guan, X. M.; Jiang, M. M.; Feng, Y.; Camacho, R. E.; Shen, Z.; Frazier, E. G.; Yu, H.; Metzger, J. M.; Kuca, S. J.; Shearman, L. P.; Gopal-Truter, S.; MacNeil, D. J.; Strack, A. M.; MacIntyre, D. E.; Van der Ploeg, L. H. T.; Qian, S. Proc. Natl. Acad. Sci. USA 2002, 99, 3240-3245 https://doi.org/10.1073/pnas.052706899
  6. Segal-Lieberman, G.; Bradley, R. L.; Kokkotou, E.; Carlson, M.; Trombly, D. J.; Wang, X.; Bates, S.; Myers, Jr. M. G.; Flier, J. S.; Maratos-Flier, E. Proc. Natl. Acad. Sci. USA 2003, 100, 10085- 10090 https://doi.org/10.1073/pnas.1633636100
  7. Gibson, W. T.; Pissios, P.; Trombly, D. J.; Luan, J.; Keogh, J.; Wareham, N. J.; Maratos-Flier, E.; O'Rahilly, S.; Farooqu, I. S. Obes. Res. 2004, 12, 743-749 https://doi.org/10.1038/oby.2004.89
  8. Bell, C. G.; Meyre, D.; Samson, C.; Boyle, C.; Lecoeur, C.; Tauber, M.; Jouret, B.; Jaquet, D.; Levy-Marchal, C.; Charles, M. A.; Weill, J.; Gibson, F.; Mein, C. A.; Froguel, P.; Walley, A. J. Diabetes 2005, 54, 3049-3055 https://doi.org/10.2337/diabetes.54.10.3049
  9. Kim, M. G.; Kim, M.-s.; Lee, S. D.; Suh, J. J. Biol. Inorg. Chem. 2006, 11, 867-875 https://doi.org/10.1007/s00775-006-0139-0
  10. Ringnalda, M. N. Jaguar; Schroedinger Inc.: Portland, OR, 1997
  11. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639- 1662 https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  12. Vitale, R. M.; Zaccaro, L.; Blasio, B. D.; Fattorusso, R.; Isernia, C.; Amodeo, P.; Pedone, C.; Saviano, M. ChemBioChem 2003, 4, 73-81 https://doi.org/10.1002/cbic.200390017
  13. Alexandrov, N. N.; Nussinov, R.; Zimmer, R. M. In Pacific Symposium on Biocomputing '96; Lawrence Hunter, L., Klein, T. E., Eds.; World Scientific Publishing Co.: Singapore, 1995; pp 53- 72
  14. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucl. Acids Res. 1994, 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  15. Sali, A.; Blundell, T. L. J. Mol. Biol. 1993, 234, 779-815 https://doi.org/10.1006/jmbi.1993.1626
  16. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179-5197 https://doi.org/10.1021/ja00124a002
  17. Bayly, C. A.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269-10280 https://doi.org/10.1021/j100142a004
  18. Chae, P. S.; Kim, M. S.; Jeung, C. S.; Lee, S. D.; Park, H.; Lee, S.; Suh, J. J. Am. Chem. Soc. 2005, 127, 2396-2397 https://doi.org/10.1021/ja044043h

Cited by

  1. Kinetic Studies on Proteolysis by Co(III) Complex of Cyclen vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.202
  2. Understanding β-Hairpin Formation: Computational Studies for Three Different Hairpins vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.741
  3. Cleavage Agents for α-Synuclein vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.882