DOI QR코드

DOI QR Code

Characteristics of the Intermediates in the Cyclization Reactions of Heterocycle-fused[1,4]oxazine Derivatives: Stepwise versus Concerted

  • Shin, Dong-Soo (Department of Chemistry, Changwon National University) ;
  • Park, Jong-Keun (Department of Chemistry Education, Research Institute of Natural Science, and Educational Research Institute, Gyeongsang National University)
  • Published : 2007.12.20

Abstract

The reaction mechanisms for the cyclizations of N-methyl-2-(2-chloropyridin-3-yloxy)acetamide to 1-methylpyrido[ 3,2-b][1,4]oxazin-2-one and 1-methyl-pyrido[2,3-b][1,4]oxazin-2-one were investigated using ab initio Hartree-Fock, second-order Moller-Plesset perturbation, single point coupled cluster with both single and double substitution, and density functional theory methods. The 5-membered spiro intermediate (2) is optimized from the cyclization of the acyclic reactants through the proton-transfer reaction, and this intermediate proceeds continuously to the 6-membered intermediate through either a stepwise or a concerted reaction. In the stepwise reaction, an N-bridge-type intermediate as a stable structure is optimized, whereas, in the concerted reaction, the O-bridge-type intermediate is not optimized.

Keywords

References

  1. Macchiarulo, A.; Costantino, G.; Fringuelli, D.; Vecchiarelli, A.; Schiaffella, F.; Fringuelli, R. Bioorg. Med. Chem. 2002, 10, 3415 https://doi.org/10.1016/S0968-0896(02)00263-8
  2. Savelon, L.; Bizot-Espiard, J. G.; Caignard, D. H.; Pfeiffer, B.; Renard, P.; Viaud, M. C.; Guillaumet, G. Bioorg. Med. Chem. 1998, 6, 133
  3. Soukri, M.; Lazar, S.; Pujol, M. D.; Akssira, M.; Leger, J. M.; Jarry, C.; Guillaumet, G. Tetrahedron 2003, 59, 3665 https://doi.org/10.1016/S0040-4020(03)00513-1
  4. Soukri, M.; Lazar, S.; Akssira, M.; Guillaumet, G. Org. Lett. 2005, 7, 3629 https://doi.org/10.1021/ol051080k
  5. Chezal, J. M.; Moreau, E.; Delmas, G.; Gueiffier, A.; Blache, Y.; Grassy, G.; Lartigue, C.; Chavignon, O.; Teulade, J. C. J. Org. Chem. 2001, 66, 6576 https://doi.org/10.1021/jo015582x
  6. Kundu, N. G.; Chaudhuri, G.; Upadhyay, A. J. Org. Chem. 2001, 66, 20. https://doi.org/10.1021/jo000826j
  7. Cho, S.-D.; Park, Y.-D.; Kim, J.-J.; Lee, S.-G.; Ma, C.; Song, S.- Y.; Joo, W.-H.; Falck, J. R.; Shiro, M.; Shin, D.-S.; Yoon, Y.-J. J. Org. Chem. 2003, 68, 7918 https://doi.org/10.1021/jo034593i
  8. Cho, S.-D.; Song, S.-Y.; Park, Y.-D.; Kim, J.-J.; Joo, W.-H.; Shiro, M.; Falck, J. R.; Shin, D.-S.; Yoon, Y.-J. Tetrahedron Lett. 2003, 44, 8995 https://doi.org/10.1016/j.tetlet.2003.09.216
  9. Buckman, B.; Mohan, R.; Koovakkat, S.; Liang, A.; Trinh, L.; Morrissey, M. M. Bioorg. Med. Chem. Lett. 1998, 8, 2235 https://doi.org/10.1016/S0960-894X(98)00386-2
  10. Rao, U. N.; Biehl, E. J. Org. Chem. 2002, 67, 3409 https://doi.org/10.1021/jo016407j
  11. Bonini, C.; Funicello, M.; Scialpi, R.; Spagnolo, P. Tetrahedron 2003, 59, 7515 https://doi.org/10.1016/S0040-4020(03)01177-3
  12. Mizuno, M.; Yamano, M. Org. Lett. 2005, 7, 3629 https://doi.org/10.1021/ol051080k
  13. Balko, T. W.; Brinkmeyer, R. S. J. Heterocycl. Chem. 1987, 24, 901 https://doi.org/10.1002/jhet.5570240403
  14. Heilmann, D.; Sicker, D.; Prakt, J. Chem. 1990, 332, 265
  15. Erickson, W. R.; McKennon, M. J. Tetrahedron Lett. 2000, 41, 4541 https://doi.org/10.1016/S0040-4039(00)00701-2
  16. Kimbaris, A.; Cobb, J.; Tsakonas, G.; Varvounis, G. Tetrahedron 2004, 60, 8807 https://doi.org/10.1016/j.tet.2004.07.036
  17. Rotas, G.; Kimbaris, A.; Varvounis, G. Tetrahedron 2004, 60, 10825 https://doi.org/10.1016/j.tet.2004.09.048
  18. Bacque, E.; Qacemi, M. E.; Zard, S. Z. Org. Lett. 2005, 7, 3817 https://doi.org/10.1021/ol051568l
  19. Manojkumar, T. K.; Suh, S. B.; Oh, S. K.; Cho, S. J.; Cui, C.; Zhang, X.; Kim, K. S. J. Org. Chem. 2005, 70, 2651 https://doi.org/10.1021/jo0493323
  20. Whangbo, M.-H.; Stewart, K. R. J. Org. Chem. 1982, 47, 736 https://doi.org/10.1021/jo00343a028
  21. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 03; Gaussian Inc.: Pittsburgh, 2003
  22. Andzelm, J.; Wimmer, E.; Salahub, D. R. The Challenge of d- and f-Electrons: Theory and Computation.; Salahub, D. R.; Zerner, M. C., Eds; ACS Symposium Series, ACS: Washington D. C., 1989
  23. Becke, A. D. Phys. Rev. 1988, A38, 3098
  24. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785
  25. Perdew, J. P. Phys. Rev. 1986, B33, 8822
  26. Park, J. K.; Kim, B. G.; Koo, I. S. Bull. Korean Chem. Soc. 2005, 26, 1795 https://doi.org/10.5012/bkcs.2005.26.11.1795
  27. Park, J. K.; Kim, B. G. Bull. Korean Chem. Soc. 2006, 27, 1405 https://doi.org/10.5012/bkcs.2006.27.9.1405

Cited by

  1. Synthesis of benzo[b][1,4]oxazin-3(4H)-ones via smiles rearrangement for antimicrobial activity vol.20, pp.6, 2011, https://doi.org/10.1007/s00044-010-9360-z
  2. Practicable Synthesis of 1-(1-Phenylethyl)-1H-pyrido[2,3-b][1,4]oxazine vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2486
  3. Microwave-assisted Synthesis of 2H-Benzo[b][1,4]oxazin-3(4H)-ones and 1H-Pyrido[2,3-b][1,4]oxazin-2(3H)-ones via Smiles Rearrangement vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1379
  4. Microwave-assisted one-pot synthesis of benzo[b][1,4]thiazin-3(4H)-ones via Smiles rearrangement vol.64, pp.41, 2007, https://doi.org/10.1016/j.tet.2008.07.059
  5. Discovery of Pyrrolidine Sulfonamides as Selective and Orally Bioavailable Antagonists of Transient Receptor Potential Vanilloid-4 (TRPV4) vol.61, pp.21, 2007, https://doi.org/10.1021/acs.jmedchem.8b01317