DOI QR코드

DOI QR Code

Fabrication and Micropatterning of a Hybrid Composite of Amorphous Calcium Carbonate and Poly(ethylenimine)

  • Lee, Hyun-Sook (Department of Chemistry, Seoul National University) ;
  • Ha, Tai-Hwan (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyun-Min (Department of Chemistry, Seoul National University) ;
  • Kim, Kwan (Department of Chemistry, Seoul National University)
  • 발행 : 2007.03.20

초록

Amorphous calcium carbonate (ACC) can readily be prepared using ethanol as the reaction medium and ammonium carbonate as the source of carbon dioxide. Other additives, or any elaborate pH control are not needed to form the initial calcium carbonate precipitate. Ammonia generated from ammonium carbonate maintains the reaction medium in a neutral or weakly basic condition, retarding the crystallization of ACC, while ethanol itself inhibits the dissolution of ACC. The ACC prepared in this way provides a rare opportunity to fabricate molded biomimetic crystals in vitro, but the ACC is too fragile to be fabricated into proper shapes. The malleability of ACC is, however, greatly enhanced by incorporating poly(ethylenimine) (PEI). The ACC/PEI composite can then be fabricated, using a proper mold or template, into mechanically durable biomimetic crystals of definite shape. The ACC in the ACC/PEI composite can further be transformed into vaterite by heating under N2 atmosphere, while the native ACC simply converts into calcite.

키워드

참고문헌

  1. Biomineralization: Chemical and Biochemical Perspectives; Mann, S.; Webb, J.; Williams, R. J. P., Eds.; VCH Publishers: Weinheim, 1989
  2. Lowenstam, H. A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, 1989
  3. Berman, A.; Addadi, L.; Weiner, S. Nature 1988, 331, 546 https://doi.org/10.1038/331546a0
  4. Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Science 1996, 271, 67 https://doi.org/10.1126/science.271.5245.67
  5. Kato, T.; Sugawara, A.; Hosoda, N. Adv. Mater. 2002, 14, 869 https://doi.org/10.1002/1521-4095(20020618)14:12<869::AID-ADMA869>3.0.CO;2-E
  6. Colfen, H.; Mann, S. Angew. Chem. Int. Ed. 2003, 42, 2350 https://doi.org/10.1002/anie.200200562
  7. Dickinson, S. R.; McGrath, K. M. J. Mater. Chem. 2003, 13, 928 https://doi.org/10.1039/b208741n
  8. Spanos, N.; Koutsoukos, P. G. J. Phys. Chem. B 1998, 102, 6679 https://doi.org/10.1021/jp981171h
  9. Jamieson, J. C. J. Chem. Phys. 1953, 21, 1385 https://doi.org/10.1063/1.1699228
  10. Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. J. Am. Chem. Soc. 2002, 124, 32 https://doi.org/10.1021/ja016990l
  11. Weiss, I. M.; Tuross, N.; Addadi, L.; Weiner, S. J. Exp. Zool. 2002, 293, 478 https://doi.org/10.1002/jez.90004
  12. Addadi, L.; Raz, S.; Weiner, S. Adv. Mater. 2003, 15, 959 https://doi.org/10.1002/adma.200300381
  13. Aizenberg, J.; Muller, D. A.; Grazul, J. L.; Hamann, D. R. Science 2003, 299, 1205 https://doi.org/10.1126/science.1079204
  14. Brecevic, L.; Nielsen, A. E. J. Cryst. Growth 1989, 98, 504 https://doi.org/10.1016/0022-0248(89)90168-1
  15. Ogino, T.; Suzuki, T.; Sawada, K. Geochim. Cosmochim. Ac. 1987, 51, 2757 https://doi.org/10.1016/0016-7037(87)90155-4
  16. Gal, J. Y.; Bollinger, J. C.; Tolosa, H.; Gache, N. Talanta 1996, 43, 1497 https://doi.org/10.1016/0039-9140(96)01925-X
  17. Faatz, M.; Grohn, F.; Wegner, G. Materials Science and Engineering C 2005, 25, 153 https://doi.org/10.1016/j.msec.2005.01.005
  18. Han, J. T.; Xu, X.; Kim, D. H.; Cho, K. Chem. Mater. 2005, 17, 136 https://doi.org/10.1021/cm048892f
  19. Merten, H. L.; Bachman, G. L. U.S. Patent 4,237,147, 1980
  20. Donners, J. J. J. M.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M.; Roman, C.; Schenning, A. P. H. J.; Sommerdijk, N. A. J. M. Chem. Commun. 2000, 1937
  21. Volkmer, D.; Harms, M.; Gower, L.; Ziegler, A. Angew. Chem. Int. Ed. 2005, 44, 639 https://doi.org/10.1002/anie.200461386
  22. Gower, L. B.; Odom, D. J. J. Cryst. Growth 2000, 210, 719 https://doi.org/10.1016/S0022-0248(99)00749-6
  23. Prenant, M. Biol. Rev. 1927, 2, 365 https://doi.org/10.1111/j.1469-185X.1927.tb01402.x
  24. Raz, S.; Weiner, S.; Addadi, L. Adv. Mater. 2000, 12, 38 https://doi.org/10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I
  25. Sugawara, A.; Ishii, T.; Kato, T. Angew. Chem. Int. Ed. 2003, 42, 5299 https://doi.org/10.1002/anie.200351541
  26. Rautaray, D.; Ahmad, A.; Sastry, M. J. Am. Chem. Soc. 2003, 125, 14656 https://doi.org/10.1021/ja0374877
  27. Heughebaert, J. C.; Nancollas, G. H. J. Phys. Chem. 1984, 88, 2478 https://doi.org/10.1021/j150656a012
  28. Braye, F.; Irigaray, J. L.; Jallot, E.; Oudadesse, H.; Weber, G.; Deschamps, N. Biomaterials 1990, 11, 83 https://doi.org/10.1016/0142-9612(90)90121-6
  29. Maeda, H.; Kasuga, T.; Hench, L. L. Biomaterials 2006, 27, 1216 https://doi.org/10.1016/j.biomaterials.2005.08.010
  30. Combes, C.; Miao, B.; Bareille, R.; Rey, C. Biomaterials 2006, 27, 1945 https://doi.org/10.1016/j.biomaterials.2005.09.026
  31. Chiroff, R. T.; White, E. W.; Weber, J. N.; Roy, D. M. J. Biomed. Mater. Res. 1975, 9, 29 https://doi.org/10.1002/jbm.820090407
  32. Souyris, F.; Pellequer, C.; Payrot, C.; Servera, C. J. Maxillofac. Surg. 1985, 13, 64 https://doi.org/10.1016/S0301-0503(85)80018-7
  33. Walsh, W. R.; Chapman-Sheath, P. J.; Cain, S.; Debes, J.; Bruce, W. J. M.; Svehla, M. J. J. Othop. Res. 2003, 21, 655 https://doi.org/10.1016/S0736-0266(03)00012-3
  34. Lucas, A.; Gaude, J.; Carel, C.; Michel, J. F.; Cathelineau, G. Int. J. Inorg. Mater. 2001, 3, 87 https://doi.org/10.1016/S1466-6049(00)00058-1
  35. Blom, E. J.; Klein-Nulend, J.; Wolke, J. G. C.; Van Waas, M. A. J.; Driessens, F. C. M.; Burger, E. H. J. Biomed. Mater. Res. 2002, 59, 265
  36. Fontaine, M. L.; Combes, C.; Sillam, T.; Dechambre, G.; Rey, C. Key Eng. Mater. 2005, 284, 105 https://doi.org/10.4028/www.scientific.net/KEM.284-286.105
  37. Loste, E.; Meldrum, F. C. Chem. Comm. 2001, 10, 901
  38. Lee, H. S.; Ha, T. H.; Kim, K. Mater. Chem. & Phys. 2005, 93, 376 https://doi.org/10.1016/j.matchemphys.2005.03.037
  39. Choi, J. S.; Choi, M. J.; Ko, K. S.; Rhee, B. D.; Pak, Y. K.; Bang, I. S.; Lee, M. Bull. Korean Chem. Soc. 2006, 27, 1335 https://doi.org/10.5012/bkcs.2006.27.9.1335
  40. Shin, Y. W.; Kim, T. H.; Lee, K. Y.; Park, K.; Han, S. W.; Lee, S. S.; Kim, J. S.; Kim, J. Bull. Korean Chem. Soc. 2005, 26, 473 https://doi.org/10.5012/bkcs.2005.26.3.473
  41. Aizenberg, J.; Lambert, G.; Addadi, L.; Weiner, S. Adv. Mater. 1996, 8, 222 https://doi.org/10.1002/adma.19960080307
  42. Ha, T. H.; Kim, D. K.; Choi, M.-U.; Kim, K. J. Colloidal Interface Science 2000, 226, 98
  43. Chen, C. C.; Boskey, A. L. Calcif. Tissue Int. 1985, 37, 395 https://doi.org/10.1007/BF02553709
  44. Mann, S.; Heywood, B. R.; Rajam, S.; Walker, J. B. A. ACS Symp. Ser. 1991, 444, 28 https://doi.org/10.1021/bk-1991-0444.ch003
  45. Donners, J. J. J. M.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Eur. J. 2002, 8, 2561 https://doi.org/10.1002/1521-3765(20020603)8:11<2561::AID-CHEM2561>3.0.CO;2-3
  46. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  47. Martin, C. R.; Aksay, I. A. J. Phys. Chem. B 2003, 107, 4261 https://doi.org/10.1021/jp034055+
  48. Ginzburg, M.; MacLachlan, M. J.; Yang, S. M.; Coombs, N.; Coyle, T. W.; Raju, N. P.; Greedan, J. E.; Herber, R. H.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc. 2002, 124, 2625 https://doi.org/10.1021/ja0107273
  49. Kim, E.; Whitesides, G. M. J. Phys. Chem. B 1997, 101, 855 https://doi.org/10.1021/jp961594o
  50. Mikalsen, E. A.; Payne, D. A. Solid State Ionics 2002, 151, 53 https://doi.org/10.1016/S0167-2738(02)00607-0

피인용 문헌

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450