DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of Isopropyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Lee, So-Hee (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Rhu, Chan-Joo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin-Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kim, Dong-Kook (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Dennis N. Kevill (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Published : 2007.04.20

Abstract

The specific rates of solvolysis of isopropyl fluoroformate are well correlated using the extended Grunwald-Winstein equation, with a sensitivity (l ) to changes in solvent nucleophilicity (NT) and a sensitivity (m) to changes in solvent ionizing power (YCl). The sensitivities (l = 1.59 ± 0.16 and m = 0.80 ± 0.06) toward changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, suggesting that the addition step of an addition-elimination mechanism is rate-determining. For methanolysis, a solvent deuterium isotope effect of 2.53 is compatible with the incorporation of general-base catalysis into the substitution process. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding chloroformate and fluoroformate esters.

Keywords

References

  1. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  2. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115
  3. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  4. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667 https://doi.org/10.1021/ja00440a037
  5. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  6. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  7. Kevill, D. N.; D'Souza, M. J. J. Chem. Res., Synop. 1993, 174
  8. Lomas, J. S.; D'Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891 https://doi.org/10.1021/ja00126a045
  9. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051 https://doi.org/10.1021/jo005630y
  10. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881 https://doi.org/10.1002/poc.569
  11. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662
  12. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304 https://doi.org/10.1021/jo00301a019
  13. Kevill, D. N.; Weitl, F. L. Tetrahedron Lett. 1971, 707
  14. Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258 https://doi.org/10.1021/jo00027a046
  15. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240
  16. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 187
  17. Kevill, D. N. In The Chemistry of the Functional Groups: The Chemistry of Acyl Halides; Patai, S., Ed.; Wiley: New York, 1972;Chapter 12
  18. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120 https://doi.org/10.1021/jo9714270
  19. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721
  20. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399 https://doi.org/10.1021/jo020467n
  21. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044 https://doi.org/10.1021/jo0492259
  22. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res., Synop. 1999, 150
  23. Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 246 https://doi.org/10.1021/ja01097a520
  24. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470 https://doi.org/10.1021/ja00204a021
  25. Glew, D. N.; Moelwyn-Hughes, E. A. Proc. R. Soc. London Ser. A 1952, 211, 254
  26. Fells, I.; Moelwyn-Hughes, E. A. J. Chem. Soc. 1959, 398
  27. Bathgate, R. H.; Moelwyn-Hughes, E. A. J. Am. Chem. Soc. 1959, 2642
  28. Robertson, R. E. Prog. Phys. Org. Chem. 1967, 4, 213 https://doi.org/10.1002/9780470171837.ch5
  29. Bunton, C. A. Nucleophilic Substitution at a Saturated Carbon Atom; Elsevier: Amsterdam, The Netherlands, 1963; pp 160-162
  30. Wiberg, K. B.; Hadad, C. M.; Rablen, P. R.; Cioslowski, J. J. Am. Chem. Soc. 1992, 114, 8644 https://doi.org/10.1021/ja00048a044
  31. Wiberg, K. B.; Rablen, P. R. J. Org. Chem. 1998, 63, 3722 https://doi.org/10.1021/jo980463b
  32. Kivinen, A. In The Chemistry of Acyl Halides; Patai, S., Ed.; Interscience: New York, 1972; pp 198-200
  33. Queen, A. Can. J. Chem. 1967, 45, 1619 https://doi.org/10.1139/v67-264
  34. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263
  35. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1988, 19, 968
  36. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283
  37. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1083
  38. Orlov, S. I.; Chimishkyan, A. L.; Grabarnik, M. S. J. Org. Chem. USSR (Engl. Tranl.) 1983, 19, 1981
  39. Lorca, A. A.; Malfroot, T.; Senet, J. P. United States Patent Application Pub. 2003, 0120103A1, Jun. 26
  40. Cuomo, J.; Olofson, R. A. J. Org. Chem. 1979, 44, 1016 https://doi.org/10.1021/jo01320a034
  41. Queen, A.; Nour, T. A. J. Chem. Soc., Perkin Trans. 2 1976, 935

Cited by

  1. Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited vol.10, pp.3, 2009, https://doi.org/10.3390/ijms10030862
  2. Corrrelation of the Specific Rates of Solvolysis of Ethyl Fluoroformate Using the Extended Grunwald-Winstein Equation vol.10, pp.3, 2009, https://doi.org/10.3390/ijms10030929
  3. Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12117806
  4. Detailed analysis for the solvolysis of isopropenyl chloroformate vol.2, pp.2, 2011, https://doi.org/10.5155/eurjchem.2.2.130-135.405
  5. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1897
  6. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  7. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
  8. Evaluation of Methylthio and Phenylthio Group Effects in the Solvolyses of 2-Chloro-2-(methylthio)acetone and 2-Chloro-2-(phenylthio)acetophenone Using Extended Grunwald-Winstein Equations vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2145
  9. Application of the Extended Grunwald-Winstein Equation to Solvolyses of n-Propyl Fluoroformate and a Consideration of Leaving Group Effects vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1747
  10. Sixty Years of the Grunwald-Winstein Equation: Development and Recent Applications vol.2008, pp.2, 2008, https://doi.org/10.3184/030823408x293189
  11. Correlation of the Rates of Solvolysis of Methyl Fluoroformate Using the Extended Grunwald-Winstein Equation vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2408
  12. Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2413
  13. Kinetic Studies of the Solvolyses of Phenyl 4-Methylphenoxy Thiophosphinyl Chloride vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2437
  14. Correlation of the Rates of Solvolyses of Benzhydryl Halides Using an Extended Grunwald-Winstein Equation vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.378
  15. A Kinetic Study on Solvolysis of Diphenyl Thiophosphorochloridate vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.383
  16. Correlation of the Rates of Solvolysis of t-Butyl Fluoroformate Using the Extended Grunwald-Winstein Equation vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3366
  17. Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1268
  18. Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions vol.33, pp.11, 2007, https://doi.org/10.5012/bkcs.2012.33.11.3657
  19. Correlation of the rates of solvolysis of acetic p‐toluenesulfonic anhydride (acetyl p‐toluenesulfonate) and a comparison with acetyl halides vol.26, pp.12, 2013, https://doi.org/10.1002/poc.3146
  20. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2007, https://doi.org/10.5012/jkcs.2017.61.1.25