DOI QR코드

DOI QR Code

Development of an Acetylcholinesterase-Based Detection Kit for the Determination of Organophosphorus and Carbamate Pesticide Residues in Agricultural Samples

  • Kim, Bo-Mee (Natural Products Chemistry Laboratory, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • El-Aty, A.M.Abd (Natural Products Chemistry Laboratory, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Hwang, Tay-Eak (Department of Plant Science, Chonnam National University) ;
  • Jin, Li-Tai (School of Pharmacy, Wonzhou Medical College) ;
  • Kim, Young-Sig (Seoul Environmental Industry) ;
  • Shim, Jae-Han (Natural Products Chemistry Laboratory, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University)
  • Published : 2007.06.20

Abstract

The objective of this study was to develop a rapid, simple, and qualitative acetylcholinesterase (AChE)- detection kit, based on a modification of the Ellman and ELISA methods, for the detection of organophosphorus (OP) and carbamate (CB) pesticide. The developed kits were used to screen a large number of agricultural samples (spiked and real) for OP and CB pesticide residues. AChE was extracted from the heads of honeybees (Apis mellifera L.) using Triton X-100, and was purified through 3 steps: diethylaminoethylcellulose chromatography (DEAE), affinity chromatography and membrane filtering, and Mono-Q column chromatography. Epoxy-activated Sepharose 6B affinity chromatography was used for large-scale purification. The presence of OP and CB pesticide residues in agricultural samples was assayed on the basis of AchE inhibition value. The presence (6 bands) or absence of some colored bands on the test line indicated a negative or positive result, respectively. The limits of detection for measured organophosphorus (OP) and carbamates (CB) pesticide residues in standard pesticide solutions and fortified samples were ranged from 0.50 to 2.50 ppm and 0.50 to 4.75 ppm, respectively.

Keywords

References

  1. Massoulie, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F. M. Prog. Neurobiol. 1993, 41, 31 https://doi.org/10.1016/0301-0082(93)90040-Y
  2. Taylor, P.; Radic, Z. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 281 https://doi.org/10.1146/annurev.pa.34.040194.001433
  3. Rosenberry, T. L. Adv. Enzymol. Relat. Areas Mol. Biol. 1975, 43, 103 https://doi.org/10.1002/9780470122884.ch3
  4. Rosenberry, T. L. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 3834 https://doi.org/10.1073/pnas.72.10.3834
  5. Jan, L. Y.; Jan, Y. N. J. Physiol. 1976, 262, 215 https://doi.org/10.1113/jphysiol.1976.sp011593
  6. Guedes, R. N.; Zhu, K. Y.; Kambhampati, S.; Dover, B. A. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 119, 205 https://doi.org/10.1016/S0742-8413(97)00208-9
  7. Gao, J. R.; Rao, J. V.; Wilde, G. E.; Zhu, K. Y. Arch. Insect Biochem. Physiol. 1998, 39, 118 https://doi.org/10.1002/(SICI)1520-6327(1998)39:3<118::AID-ARCH4>3.0.CO;2-6
  8. Eldefrawi, M. E.; Tripathi, R. K.; O'Brien, R. D. Biochim. Biophys. Acta 1970, 212, 308 https://doi.org/10.1016/0005-2744(70)90211-1
  9. Devonshire, A. L. Biochem. J. 1975, 149, 463
  10. Steele, R. W.; Smallman, B. N. Biochim. Biophys. Acta 1976, 445, 131 https://doi.org/10.1016/0005-2744(76)90166-2
  11. Belzunces, L. P.; Toutant, J. P.; Bounias, M. Biochem. J. 1988, 255, 463
  12. Manulis, S.; Ishaaya, I.; Perry, A. S. Pestic. Biochem. Physiol. 1981, 15, 267 https://doi.org/10.1016/0048-3575(81)90010-9
  13. Li, F.; Han, Z. Arch. Insect Biochem. Physiol. 2002, 51, 37 https://doi.org/10.1002/arch.10048
  14. Graham, D. M.; Gregor, J. D.; Devonshire, A. L. Pests Dis. 1994, 4C, 413
  15. Gao, J. R.; Zhu, K. Y. Insect Biochem. Mol. Biol. 2001, 31, 1095 https://doi.org/10.1016/S0965-1748(01)00057-1
  16. Keane, S.; Ryan, M. F. Insect Biochem. Mol. Biol. 1999, 29, 1097 https://doi.org/10.1016/S0965-1748(99)00088-0
  17. Fournier, D.; Cuany, A.; Bride, J. M.; Berge, J. B. J. Neurochem. 1987, 49, 1455 https://doi.org/10.1111/j.1471-4159.1987.tb01014.x
  18. Zhu, K. Y.; Brindley, W. A. Insect Biochem. Mol. Biol. 1992, 22, 253 https://doi.org/10.1016/0965-1748(92)90062-J
  19. Zhu, K. Y.; Clark, J. M. Insect Biochem. Mol. Biol. 1994, 24, 453 https://doi.org/10.1016/0965-1748(94)90040-X
  20. Gao, X. W.; Zhou, X. G.; Wang, R. J.; Zheng, B. Z. Acta Entomol. Sin. 1998, 41, 21
  21. Hsiao, Y. M.; Lai, J. Y.; Liao, H. Y.; Feng, H. T. J. Agric. Food Chem. 2004, 52, 5340 https://doi.org/10.1021/jf0494377
  22. Moreno, M. J.; Abad, A.; Pelegri, R.; Martinez, M. I.; Saez, A.; Gamon, M.; Montoya, A. J. Agric. Food Chem. 2001, 49, 1713 https://doi.org/10.1021/jf001171q
  23. Wigfield, Y. Y.; Grant, R. Bull. Environ. Contam. Toxicol. 1993, 51, 171
  24. Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. Biochem. Pharmacol. 1961, 7, 88 https://doi.org/10.1016/0006-2952(61)90145-9
  25. Guilbault, G. G.; Kuan Shia, S.; Sadar Muhammand, H. J. Agric. Food Chem. 1970, 18, 692 https://doi.org/10.1021/jf60170a005
  26. De la Hoz, D.; Doctor, B. P.; Ralston, J. S.; Rush, R. S.; Wolfe, A. D. Life Sci. 1986, 39, 195 https://doi.org/10.1016/0024-3205(86)90530-8
  27. Ralston, J. S.; Main, A. R.; Kilpatrick, B. F.; Chasson, A. L. Biochem. J. 1983, 211, 243
  28. Smacchi, E.; Gobbetti, M.; Rossi, J.; Fox, P. F. Lait 2000, 80, 255 https://doi.org/10.1051/lait:2000124
  29. Bradford, M. M. Anal. Biochem. 1976, 72, 248 https://doi.org/10.1016/0003-2697(76)90527-3
  30. Yu, S. J. Pestic. Biochem. Physiol. 2006, 84, 135 https://doi.org/10.1016/j.pestbp.2005.06.003
  31. Hudson, L.; Hay, F. C. Practical Immunology; Blackwell: Oxford, London, 1985; pp 14-117
  32. Zhu, K. Y.; Clark, J. M. Pestic. Biochem. Physiol. 1995, 51, 57 https://doi.org/10.1006/pest.1995.1007
  33. Zhu, K. Y.; Brindley, W. A. Insect Biochem. Mol. Biol. 1992, 22, 245 https://doi.org/10.1016/0965-1748(92)90061-I
  34. Zhu, K. Y.; Brindley, W. A.; Hsiao, T. H. J. Econ. Entomol. 1991, 84, 790 https://doi.org/10.1093/jee/84.3.790
  35. Grigg, M. E.; Tang, L.; Hussein, A. S.; Selkirk, M. E. Mol. Biochem. Parasitol. 1997, 90, 513 https://doi.org/10.1016/S0166-6851(97)00202-8
  36. Seo, Y. M.; Nam, K. H.; Kang, P. S.; Ko, S. B.; Oh, E.; Sung, M. T.; Choi, B. W.; Lee, B. H.; Park, J. H. Bull. Korean Chem. Soc. 2007, 28, 225-228 https://doi.org/10.5012/bkcs.2007.28.2.225
  37. Gnagey, A. L.; Forte, M.; Rosenberry, T. L. J. Biol. Chem. 1987, 262, 13290
  38. Park, N. J.; Jung, Y. S.; Musilek, K.; Jun, D.; Kuca, K. Bull. Korean Chem. Soc. 2006, 27(9), 1401 https://doi.org/10.5012/bkcs.2006.27.9.1401

Cited by

  1. Sensor System Based on Acetylcholinesterase in Homogenous Phase for Analysis of Paraoxon vol.41, pp.12, 2008, https://doi.org/10.1080/00032710802240842
  2. Diagnosis of Intoxication by the Organophosphate VX: Comparison Between an Electrochemical Sensor and Ellman´s Photometric Method vol.8, pp.9, 2008, https://doi.org/10.3390/s8095229
  3. Amperometric Biosensors for Real Time Assays of Organophosphates vol.8, pp.9, 2008, https://doi.org/10.3390/s8095303
  4. The Rapid Screening of Triazophos Residues in Agricultural Products by Chemiluminescent Enzyme Immunoassay vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0133839
  5. Simultaneous Determination of Amitraz, Bromopropylate, Coumaphos, Cymiazole and 2,4-Dimethylaniline in Korean Honey Samples by High-Performance Liquid Chromatography vol.29, pp.5, 2008, https://doi.org/10.5012/bkcs.2008.29.5.1043
  6. Development of square wave voltammetry method for the assessment of organophosphorus compound impact on the cholinesterase of pheretima with 2,6-dichloroindophenol as a redox indicator vol.77, pp.1, 2009, https://doi.org/10.1016/j.chemosphere.2009.05.004
  7. Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using single-walled carbon nanotube-modified ferrule graphite electrode vol.166, pp.None, 2012, https://doi.org/10.1016/j.snb.2012.03.022
  8. Synthesis and application of quantum dots-based biosensor vol.6, pp.1, 2007, https://doi.org/10.1088/2043-6262/6/1/015015
  9. Chromogenic spray reagent for the detection and identification of amitraz in biological materials vol.32, pp.1, 2007, https://doi.org/10.1556/1006.2019.32.1.7