DOI QR코드

DOI QR Code

Protective Activity of Fucoidan and Alginic Acid against Free Radical-Induced Oxidative Stress under in Vitro and Cellular System

  • So, Mi-Jung (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Kim, Boh-Kyung (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Choi, Mi-Jin (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Park, Kun-Young (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Rhee, Sook-Hee (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Cho, Eun-Ju (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
  • Published : 2007.12.31

Abstract

We investigated radical scavenging effects and protective activities of fucoidan and alginic acid, active polysaccharide components from brown seaweeds, against peroxyl radical-induced oxidative stress under in vitro and cellular system. Fucoidan exerted strong radical scavenging effects against nitric oxide (NO) and superoxide anion $(O_2)$. On the other hand, alginic acid did not show inhibitory activity against NO and relatively weak $O_2{^-}$ scavenging effect. Additionally, alginic acid exhibited higher hydroxyl scavenging activity than fucoidan. Both fucoidan and alginic acid significantly enhanced cell viability against oxidative stress induced by 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH). At $1000{\mu}g/mL$ concentration of fucoidan and alginic acid, the viability was increased from 16.4% to 85.9% and 67.7%, respectively. In addition, fucoidan and alginic acid ameliorated the lipid peroxidation in LLC-PK1 cell induced by AAPH in a dose-dependent manner. In particular, fucoidan showed stronger inhibitory effect than alginic acid in the cellular system. The present study suggests that fucoidan and alginic acid may be promising antioxidants against oxidative stress induced by free radicals.

Keywords

References

  1. Halliwell B. 1997. Antioxidants and human disease: a general introduction. Nutr Rev 55: 44S-49S https://doi.org/10.1111/j.1753-4887.1997.tb01594.x
  2. Bokov A, Chaudhuri A, Richardson A. 2004. The role of oxidative damage and stress in aging. Mech Ageing Dev 125: 811-826 https://doi.org/10.1016/j.mad.2004.07.009
  3. Cahyana AH, Shuto Y, Kinoshita Y. 1992. Pyropheophytin a as an antioxidative substance from the marine alga, Arame (Eisenia bicyclis). Biosci Biotechnol Biochem 56: 1533-1535 https://doi.org/10.1271/bbb.56.1533
  4. Yan XJ, Chuda Y, Suzuki M, Nagata T. 1999. Fucoxanthin as the major antioxidant in Hizikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63: 605-607 https://doi.org/10.1271/bbb.63.605
  5. Ruperez P, Ahrazem O, Leal JA. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50: 840-845 https://doi.org/10.1021/jf010908o
  6. Torsdottir I, Alpsten M, Holm G, Sandberg AS, Tolli J. 1991. A small dose of soluble alginate-fiber affects postprandial glycemia and gastric emptying in humans with diabetes. J Nutr 121: 795-799 https://doi.org/10.1093/jn/121.6.795
  7. Kimura Y, Watanabe K, Okuda H. 1996. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 54: 47-54 https://doi.org/10.1016/0378-8741(96)01449-3
  8. Cho EJ, Rhee SH, Park KY. 1998. Antimutagenic and anticarcinogenic effects of alginic acid extracted from sporophyll of sea mustard. J Food Sci Nutr 3: 169-174
  9. Xue C, Yu G, Hirata T, Terao J, Lin H. 1998. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Biosci Biotechnol Biochem 62: 206-209 https://doi.org/10.1271/bbb.62.206
  10. Lee KS, Choi YS, Seo JS. 2004. Sea tangle supplementation lowers blood glucose and supports antioxidant systems in streptozotocin-induced diabetic rats. J Med Food 7: 130-135 https://doi.org/10.1089/1096620041223996
  11. Yamamoto I, Takahashi M, Suzuki T, Seino H, Mori H. 1984. Enhancement of antitumor activity by sulfation of a crude fucoidan fraction from Sargassum kjellmanianum. Jpn J Exp Med 54: 143-151
  12. Nishino T, Kiyohara H, Yamada H, Nagumo T. 1991. An anticoagulant fucoidan from the brown seaweed Ecklonia kurome. Phytochemistry 30: 535-539 https://doi.org/10.1016/0031-9422(91)83722-W
  13. Feldman SC, Reynaldi S, Stortz CA, Cerezo AS, Danont EB. 1999. Antiviral properties of fucoidans from Leathesia difformis. Phytomedicine 6: 335-340 https://doi.org/10.1016/S0944-7113(99)80055-5
  14. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [$^{15}$N]nitrate in biological fluids. Anal Biochem 126: 131-138 https://doi.org/10.1016/0003-2697(82)90118-X
  15. Sreejayan, Rao MN. 1997. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49: 105-107 https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  16. Ewing JF, Janero DR. 1995. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232: 243-248 https://doi.org/10.1006/abio.1995.0014
  17. Gutteridge JMC. 1987. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. 243: 709-714 https://doi.org/10.1042/bj2430709
  18. Yokozawa T, Cho EJ, Hara Y, Kitani K. 2000. Antioxidative activity of green tea treated with radical initiator 2,2'-azobis (2-amidinopropane) dichydrochloride. J Agric Food Chem 48: 5068-5073 https://doi.org/10.1021/jf000253b
  19. Yokazawa T, Cho EJ, Nakagawa T, Terasawa K, Takeuchi S. 2000. Inhibitory effect of green tea tannin on free radical-induced injury to the renal epithelial cell line, LLC-PK1. Pharm Pharmacol Commun 6: 521-526
  20. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65: 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  21. Yagi K. 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212-216 https://doi.org/10.1016/0006-2944(76)90049-1
  22. Yokode M, Kita T, Kikawa Y, Ogorochi T, Narumiya S, Kawai C. 1988. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low-density lipoprotein. J Clin Invest 81: 720-729 https://doi.org/10.1172/JCI113377
  23. Halliwell B. 1987. Oxidants and human disease: some new concepts. FASEB J 1: 358-364. https://doi.org/10.1096/fasebj.1.5.2824268
  24. Halliwell B, Zhao K, Matthew W. 1999. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good. Free Radic Res 31: 651-669 https://doi.org/10.1080/10715769900301221
  25. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620-162 https://doi.org/10.1073/pnas.87.4.1620
  26. Patel RP, Mcandrew J, Sellak H, White R, Jo H, Freeman BA, Darley-Usmar VM. 1999. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411: 385-400 https://doi.org/10.1016/S0005-2728(99)00028-6
  27. Blough NV, Zafiriou OC. 1985. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem 24: 3502-3504 https://doi.org/10.1021/ic00216a003
  28. Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF. 1993. A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268: 21770-21776
  29. Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec- Jouault S. 2001. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330: 529-535 https://doi.org/10.1016/S0008-6215(00)00314-1
  30. Mauray S, Sternberg C, Theveniaux J, Millet J, Sinquin C, Tapon-Bretaudiere J, Fischer AM. 1995. Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thromb Haemost 74: 1280-1285 https://doi.org/10.1055/s-0038-1649927
  31. Blondin C, Fischer E, Boisson-Vidal C, Kazatchkine MD,  Jozefonvicz J. 1994. Inhibition of complement activation by natural sulfated polysaccharides (fucans) from brown seaweed. Mol Immunol 31: 247-253 https://doi.org/10.1016/0161-5890(94)90121-X
  32. Zhuang C, Itoh H, Mizuno T, Ito H. 1995. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci Biotech Biochem 59: 563-567 https://doi.org/10.1271/bbb.59.563
  33. Venkateswaran PS, Millman I, Blumberg BS. 1989. Interaction of fucoidan from Pelvetia fastigiata with surface antigens of hepatitis B and woodchuck hepatitis viruses. Planta Med 55: 265-270 https://doi.org/10.1055/s-2006-962000
  34. Feldman SC, Reynaldi S, Stortz CA, Cerezo AS, Damont EB. 1999. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomed 6: 335-340 https://doi.org/10.1016/S0944-7113(99)80055-5
  35. Terao K, Niki E. 1986. Damage to biological tissues induced by radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. Free Radic Biol Med 2: 193-20 https://doi.org/10.1016/S0748-5514(86)80070-8
  36. Miki M, Tamai H, Mino M, Yamamoto Y, Niki E. 1987. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by $\alpha$-tocopherol. Arch Biochem Biophys 258: 373-380 https://doi.org/10.1016/0003-9861(87)90358-4
  37. Matsura T, Yamada K, Kawasaki T. 1992. Difference in antioxidant activity between reduced coenzyme Q9 and reduced coemzyme Q10 in the cell: studies with isolated rat and guinea pig hepatocytes treated with a water-soluble radical initiator. Biochim Biophys Acta 1123: 309-315 https://doi.org/10.1016/0005-2760(92)90012-K
  38. Rapin JR, Zaibi M, Drieu K. 1998. In vitro and in vivo effects of an extract of Gingko biloba (EGb 761), ginkgolide B, and bilobalide on apoptosis in primary cultures of rat hippocampal neurons. Drug Dev Res 45: 23-29 https://doi.org/10.1002/(SICI)1098-2299(199809)45:1<23::AID-DDR4>3.0.CO;2-0
  39. Hochstein P, Jain SK. 1981. Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging. Fed Proc 40: 183-188

Cited by

  1. Effects of Sea Tangle Extract on Formation of Collagen and Collagen Cross-link in Ovariectomized Rats vol.18, pp.11, 2008, https://doi.org/10.5352/JLS.2008.18.11.1578
  2. Inhibitory activities of the edible brown alga Laminaria japonica on glucose-mediated protein damage and rat lens aldose reductase vol.77, pp.6, 2011, https://doi.org/10.1007/s12562-011-0406-z
  3. The Effect of Eisenia bicyclis Extracts on Bone Tissues in Ovariectomized Rats vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.033
  4. Algal polysaccharides: potential bioactive substances for cosmeceutical applications pp.1549-7801, 2018, https://doi.org/10.1080/07388551.2018.1503995
  5. Marine Carbohydrate-Based Compounds with Medicinal Properties vol.16, pp.7, 2018, https://doi.org/10.3390/md16070233
  6. 미역포자엽추출 푸코이단의 X-선 조사 흰쥐 폐장상해에 대한 방오기능 평가 vol.42, pp.2, 2009, https://doi.org/10.5657/kfas.2009.42.2.131
  7. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review vol.17, pp.10, 2007, https://doi.org/10.3390/md17100590
  8. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication—Potential Implication of Sirtuins vol.18, pp.5, 2007, https://doi.org/10.3390/md18050242