DOI QR코드

DOI QR Code

Antioxidant Effects of Sea Tangle Added Korean Cabbage Kimchi in Vitro and in Vivo

다시마를 첨가한 배추김치의 항산화 효과

  • Ku, Hwa-Suk (Dept. of Food Science & Nutrition, and Kimchi Research Institute, Pusan National University) ;
  • Noh, Jeong-Sook (Dept. of Food Science & Nutrition, and Kimchi Research Institute, Pusan National University) ;
  • Kim, Hyun-Ju (Dept. of Food Science & Nutrition, and Kimchi Research Institute, Pusan National University) ;
  • Cheigh, Hong-Sik (Dept. of Food Science & Nutrition, and Kimchi Research Institute, Pusan National University) ;
  • Song, Yeong-Ok (Dept. of Food Science & Nutrition, and Kimchi Research Institute, Pusan National University)
  • 구화숙 (부산대학교 생활환경대학 식품영양학과 및 김치연구소) ;
  • 노정숙 (부산대학교 생활환경대학 식품영양학과 및 김치연구소) ;
  • 김현주 (부산대학교 생활환경대학 식품영양학과 및 김치연구소) ;
  • 최홍식 (부산대학교 생활환경대학 식품영양학과 및 김치연구소) ;
  • 송영옥 (부산대학교 생활환경대학 식품영양학과 및 김치연구소)
  • Published : 2007.12.31

Abstract

The antioxidant effect of Korean cabbage kimchi containing 20% of sea tangle (SK) was studied in the rats fed with high fat diet (HFD) for 8 weeks. The rats (n=40) were divided into four experimental groups as a high fat diet group (HFD), HFD supplemented either with Korean cabbage kimchi used as experimental control (HCK), with SK (HSK), or with J-kimchi (HJK) that was purchased at the local market. The amount of kimchi supplemented was 10%. DPPH radical scavenging activities of SK were significantly higher than those of CK. Kimchi suppressed the hepatic lipid peroxidation significantly, especially by HSK (p<0.05). Inhibition of thiobarbituric acid reactive substances (TBARS) formation in HSK was the greatest among the kimchi groups (p<0.05). The activities of $Cu{\cdot}Zn$-superoxide dismutase (SOD), Mn-SOD and catalase decreased significantly (p<0.05) by kimchi supplementation. SOD and catalase activities of HSK were found to be the lowest among the kimchi groups. The decreased enzyme activity in kimchi group might be due to the less amount of lipid peroxides produced in the rats fed kimchi diet. The lowest antioxidative enzyme activities observed in HSK were in line with those of hepatic POV and TBARS of HSK. Our findings confirmed that kimchi acted as an antioxidant in the high fat fed rats and its antioxidant effect was significantly increased by the addition of sea tangle.

다시마 첨가 배추김치의 항산화 효과를 고지방식이를 섭취시킨 흰 쥐에서 살펴보았다. 동물실험군은 고지방식이군, 고지방식이에 대조김치, 다시마를 20% 첨가한 김치, 그리고 시판하는 J-김치를 첨가한 4군으로 실험군 당 동물은 10마리였으며 사육기간은 8주였다. 지방은 총에너지의 40%를 지방을 첨가하였으며 김치는 동결 건조하여 10% 첨가하였다. 김치의 DPPH 소거 효과는 김치군에서 유의적으로 높았으며 김치군 중 다시마 첨가 김치의 효과가 각 실험 농도에서 유의적으로 높았다(p<0.05). 간의 지질과산화는 김치식이에 의해 유의적으로 감소되었고, 김치군 중 다시마 첨가 김치의 TBARS 농도는 유의적으로 낮았다(p<0.05). 간의 항산화 효소 활성을 살펴보았을 때 김치 섭취군의 $Cu{\cdot}Zn$-SOD, Mn-SOD, 그리고 catalase의 활성은 고지방식이군에 비해 유의적으로 낮았으며(p<0.05) 다시마 첨가 김치군의 효소 활성은 다른 김치군에 비해 유의적으로 낮았다(p<0.05). 이는 고지방식이에 의해 생성된 지질과산화물질이 김치에 존재하는 항산화물질에 의해 제거되어 이를 방어할 항산화 효소활성이 고지방식이군에 비해 낮게 나타난 것으로 생각된다. 본 연구에서는 다시마 첨가 김치의 항산화 효과가 김치군 중 가장 높은 것으로 나타나 김치의 항산화 효과가 다시마의 활성 성분에 의해 더욱 증진된 것으로 확인되었다.

Keywords

References

  1. Willcox JK, Ash SL, Catignani GL. 2004. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44: 275-295 https://doi.org/10.1080/10408690490468489
  2. Moskaug JO, Carlsen H, Myhrstad MC, Blomhoff R. 2005. Polyphenols and glutathione synthesis regulation. Am J Clin Nutr 81: 277S-283S https://doi.org/10.1093/ajcn/81.1.277S
  3. Song YO. 2004. The functional properties of kimchi for the health benefits. Food Indstry Nutr 9: 27-33
  4. Cheigh HS, Park KY. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34: 175-203 https://doi.org/10.1080/10408399409527656
  5. Penman A, Sanderson GR. 1972. A method for the determination of uronic acid sequence in alginates. Carbohydrate Res 25: 273-282 https://doi.org/10.1016/S0008-6215(00)81637-7
  6. Kim YY, Lee KW, Kim GB, Cho YJ. 2000. Studies on physicochemical and biological properties of depolymerized algonate from sea tangle, laminaria japnicus by thermal decomposition. J Kor Fish Soc 33: 393-398
  7. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-vidal C. 2000. Relationship between sulfate groups and biological activities of fucans. Thromb Res 100: 453-459 https://doi.org/10.1016/S0049-3848(00)00338-8
  8. Colliec S, Fisher AM, Tapon-Bretaudiere H, Biosson C, Durand P, Jozefonvicz J. 1991. Anticoagulant of a fucoidan fraction. Thromb Res 64: 143-154 https://doi.org/10.1016/0049-3848(91)90114-C
  9. Ku HS, Noh JS, Yun YR, Kim HJ, Kwon MJ, Cheigh HS, Song OK. 2007. Weight reduction and lipid lowering effect of sea tangle added Korean cabbage kimchi. J Korean Soc Food Sci Nutr 36: 1140-1147 https://doi.org/10.3746/jkfn.2007.36.9.1140
  10. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939- 1951 https://doi.org/10.1093/jn/123.11.1939
  11. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1999-1200
  12. Lenz ML, Hughes H, Mitchell JR, Via DP, Guyton JR, Taylor AA, Gotto AM Jr, Smith CV. 1990. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. J Lipid Res 31: 1043-1050
  13. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Methods Enzymol 52: 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein determination with the folin phenol reagent. J Biol Chem 193: 265-275
  15. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  16. Oyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 142: 290-296 https://doi.org/10.1016/0003-2697(84)90467-6
  17. Han J, Kang S, Choue R, Kim H, Leem K, Chung S, Kim C, Chung J. 2002. Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinnatifida. Fitoterapia 73: 710-712 https://doi.org/10.1016/S0367-326X(02)00236-8
  18. Kim HJ, Kwon MJ, Song YO. 2000. Effects of solvent fractions of Korean cabbage kimchi on antioxidative enzyme activities and fatty acid composition of phospholipid of rabbit fed 1% cholesterol diet. J Korean Soc Food Sci Nutr 29: 900-907
  19. Choi JH, Kim DI, Park SH, Kim DW, Kim CM, Koo JG. 2000. Effects of sea tangle (Laminaria japonica) extract and fucoidan components on lipid metabolism of stressed mouse. J Korean Fish Soc 33: 124-128
  20. Kim HJ. 2000. Antiatherogenic effect of solent fraction of cabbage kimchi in rabbit. MS Thesis. Pusan National University
  21. Kwon MJ, Song YS, Song YO. 1998. Antioxidative effect of kimchi ingredients on rabbits fed cholesterol diet. J Korean Soc Food Sci Nutr 27: 1189-1196
  22. Kim HJ, Kwon MJ, Seo JM, Kim JG, Song SH, Seo HS, Song YO. 2004. The effect of 3-(4-hydroxyl-3',5'-dimethoxyphenyl)propionic acid in Chinese cabbage kimchi on lowering hypercholesterolemia. J Korean Soc Food Sci Nutr 33: 52-58 https://doi.org/10.3746/jkfn.2004.33.1.052
  23. Kim HJ, Lee JS, Chung HY, Song SH, Suh H, Noh JS, Song YO. 2007. 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, an active principle of kimchi, inhibits development of atherosclerosis in rabbits. J Agric Food Chem 55: 10486- 10492 https://doi.org/10.1021/jf072454m

Cited by

  1. Antioxidant Production by Bacillus methylotrophicus Isolated from Chungkookjang, Korean Traditional Fermented Food vol.22, pp.7, 2013, https://doi.org/10.5322/JESI.2013.22.7.855
  2. Optimization of Hot Water Extraction Conditions of Wando Sea Tangle (Laminaria japonica) for Development of Natural Salt Enhancer vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.767
  3. Fermentation Characteristics of Low-sodium Kimchi by Kimchi Lactic Acid Bacteria Starters vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.801
  4. Effects of Mashed Red Pepper on the Quality Characteristics of Kimchi vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1769
  5. Fermentative Properties and Immunomodulating Activity of Low-sodium Kimchi Supplemented with Acanthopanax senticosus and Glycyrrhizae uralensis Extracts vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.878
  6. Quality Characteristics of Commercial Kimchi Paste vol.33, pp.1, 2017, https://doi.org/10.9724/kfcs.2017.33.1.9
  7. Production and Fermentation Characteristics of Mukeunji with a Mixed Starter vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1467
  8. Quality characteristics of a Kimchi containing Oriental melon peel vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.518
  9. Changes in Quality Characteristics of Kimchi Added with the Fresh Red Pepper (Capsicum Annuum L.) vol.28, pp.2, 2012, https://doi.org/10.9724/kfcs.2012.28.2.167
  10. Quality characteristics of kimchi with Artemisia annua extracts vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.666
  11. Quality and Antioxidant Characteristics of Granule Tea Prepared with Sea Tangle (Laminaria japonica) and Sea Mustard (Undaria pinnatifida) Powder as Affected by Extraction Method vol.19, pp.4, 2012, https://doi.org/10.11002/kjfp.2012.19.4.525
  12. The Quality Characteristics of Baechukimchi added with Broadleaf Liriope (Liriope platyphylla) vol.13, pp.11, 2015, https://doi.org/10.14400/JDC.2015.13.11.391
  13. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.1
  14. 식초기반 샐러드 드레싱용 다시마 식초 제조 및 이화학적 특성 vol.33, pp.3, 2007, https://doi.org/10.9724/kfcs.2017.33.3.300
  15. 버섯 및 다시마 추출물과 갓의 첨가가 김치의 항산화 특성에 미치는 영향 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.471
  16. 국내 유통 김치의 계절별 품질특성 변화 vol.34, pp.2, 2007, https://doi.org/10.7318/kjfc/2019.34.2.224