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A STUDY OF BRAMBLE-HILB];'JRT LEMMA AND ITS RELATION
TO POINCARE’ S INEQUALITY

SEUNG-WOO KUK *

Abstract. This paper is concerned with the proof of so-called Bramble-Hilbert Lemma. We
present that Poincaré’ s inequality in [3] implies one of results of Morrey which is crucial in the proof.
In this point of view, we recognize that removing the average term in Poincaré’s inequality fulfills a
crucial role in the proof of Bramble-Hilbert Lemma. It is accomplished by adding some polynomial
of degree one less than the degree of the Sobolev space in the outset. So, the condition annihilating
the set of polynomials P_1 of degree k — 1 is required necessarily in Bramble-Hilbert Lemma.
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1. Introduction. In the paper [1] of so-called Bramble-Hilbert Lemma, the au-
thors gave estimates for a certain class of linear functionals on Sobolev spaces. These
functionals have the property that they annihilate the set of polynomials Py_; of de-
gree k — 1. The bounds were given in terms of the L, norms of all k-th order partial
derivatives. In this paper, one of the results of Morrey, Lemma 3.3 is deduced from
Poincaré’ s inequality in [3]

lu = (w)vllLew) < Crl|DullLewy, (1.1)

where (u)y is the average of u over U, and r is a diameter of U. In other words,
generalization of Poincaré’ s inequality in [3] implies exactly Lemma 3.3. Another
result of Morrey, Lemma 3.2 carry out a role removing the term (u)y in Poincaré’ s
inequality. Lemma 3.2 fulfills the role by adding some polynomial of degree k£ —1 with
u. So, Bramble-Hilbert Lemma need the condition annihilating the set of polynomials
Py_, of degree k — 1. The form removed the term (u)y in Poincaré’ s inequality

Null ey < Crl| Dull e vy (1.2)

is essentially crucial in the proof of Bramble and Hilbert. If we obtain the form of (1.2),

then the conclusions of Bramble-Hilbert Lemma is derived naturally. For example, in

We'P, the Sobolev space vanishing on the boundary, we get (1.2) by so-call Poincaré-

Friedrichs inequality, and so the condition anninilating the set of polynomials Py_; is
. . . . k,p

unnecessary in applying Bramble-Hilbert Lemma in Wy™".

2. Notation and Preliminaries. Let R with boundary 0R be a bounded do-
main in Euclidean n-space, R™. Let p be the diameter of R. We shall assume
that R satisfies a strong cone property; that is, there exists a finite open covering
{0;}, i =1,...,N of R and corresponding cones {C;} with vertices at the origin
such that = 4 C; is contained in R for any z € R() O; (Figure 2.1). We shall consider
complex-valued functions defined on R. As usual we define L,(R) as the set of all
functions u such that

1 e
£l = o [ 1@ )Pas) (21)
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Fi1c. 2.1. a domain satisfying strong cone propert:y' with’ b,.ﬁm'te open covering {O;} in R?

exist and is finite, where dx denotes Lebesque measure. The above norm is equivalent
1

to the ordinary usual norm ||f|[z»(ry = ([ |f(2)|Pdz)? since p is finite and R is

bounded. We shall need the following seminorms :

[ulpk,R = Z |1 D%ullp, R (2.2)
|a|=k
and
(oo e, = Y 1D*tloo,r, (2.3)
lal=k

where |u]co,r = €85.5upzerlu(z)]. The above semi norm (2.2) is a little different from

the usual semi norm (Elal= v IR |D°u[”dm)§, but is equivalent to the usual semi norm
since

¢ S ([ prupant <(¥ [ pupant < ([ 10mupant, @)

la|=k |al=k lee|=k

where Ny is the number of multi-index a with |a| = k, and C is some constant less

1_
than or equal to N} ''In (2.4), the first inequality is induced by Jensen’s inequality,
and the second inequality is easy to be shown by Theorem 4.1. In (2.2) and the sequel,
« is a multi-index;

a -0

n
a=(ay,...,a,) and |a|=Zai, D® =(—
i=1

o) (G

Now we shall consider to introduce the Sovolev space and the weak derivative in [3].
Assume that U C R™ is open. Fix 1 < p < oo and let k be a nonnegative integer.

Notation.
(i) C¥(U) = {u: U — C | u is k-times continuously differentiable }

(if) C®(U) ={u:U — C | u is infinitely differentiable } = ﬂ ck()
k=0
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(iif) C,(U), CHU), etc. denote these functions in C(U), C*(U), etc. with compact
support.
(iv) LP(U) = {u: U — C | u is Lebesque measurable, ||[u|| >y < o0} (1 <p<o0)

(v) LL(U) = {u:U — C | u € LP(V) for each V CC U}, where V CC U denotes
that V is compactly embedded in U.

We define the Sobolev space WFP(U) consists of all locally summable functions
u: U — C, that is, u € L} ,(U) such that for each multi index o with |af < k,
D2y exists in the weak sense and belongs to LP(U).

In this paper we take the norm on W™P(R) to be

Wull? p = P70l g (2.5)
k=0

It is trivial that this is equivalent to the usual norm for W™P?(R} .

We shall also consider the space of functions which have continuous derivatives of
order up to and including m in R; this space will be denoted by C™(R). For the
purpose of this paper we take the norm on C™(R) to be:

lulloo,m,r = Zpk'uloo,k,R- (2.6)
k=0

Again, the usual norm on C™(R) is equivalent to (2.6). We shall denote by Py the
set of polynomials of degree less than to equal to k, restricted to R. Throughout this
paper we shall use C to denote a generic constant not necessarily the same in any two
places.

N

3. Estimation of linear functionals. Let us consider B a Banach space with

norm || - || g and let By be a closed linear subspace of B. We define Q by the quotient
or factor space of B with respect to By, denoted by B/B;. The elements of Q are
equivalence classes [u], where [u] is the class containing u. The equivalence relation
is given by ~ where for u,v € B,u ~ v if and only if u — v € B;. The usual norm on
Q is given by |\[u]llg = infvep, ||u + v||z. Under the assumptions we have made for
B and By , it is well known that Q is a Banach space with norm |} - |-
Now consider the (closed) finite-dimensional subspace of W,’f(R) given by Py_,.(We
know that a finite-dimensional subspace of a normed space is closed.) Here, p(z) €
Pi._, if and only if p(z) = le\ﬁkwl ayz" for ¢ € R, where a., are complex numbers
and v is a multi-index.

THEOREM 3.1. Let Q = WFP(R)/Py_1 . Then |ulkp,r is a norm on Q equivalent
to ||[ulllq. Further, there ezist C independent of p and u such that for any u €
W*?(R)

PFlulkpr < Il < Co*lulk.p.r- (3.1)

We shall make use of two lemmas which can be found in Morrey (4], p.85 . In
this paper, we give each lemma its proof which is not cited from Morrey.

LEMMA 3.2. For any u € W5P(R) there is a unique polynomial p of degree less
than or equal to k —1 ( or 0 ) such that

/ D*(u+p)=0 (3.2)
R
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foralla with0 <ja|<k-1.

Proof. of Lemma 3.2. Let p be an element in Pr_;. Then p(x) is written by
Z|’Y|S ¢_1 a4z for all z € R, where a, are complex numbers and 7 is a multi-index.
Now, we shall show that p(z) satisfying (3.2) is unique in Px_;. Since u € W:(R),
weak derivatives of order less than or equal to k of u satisfies [ |D%ufP < oo for all
a with |a| < k. we note that each [, D*u is bounded since

/D"‘uS/ |D°‘u|§/ |Deul?.
R R R

The above latter inequality is easily shown by Jensen inequality with using convex
function z? and bounded domain. Even though the above inequalities is not con-
sidered, weak derivative may be defined conventionally in a set of locally summable
functions. We see that (3.2) means

A D*(p(@) = - [ D" (3:3)

for all @ with 0 < |a| < k — 1. Here, the left term of (3.3) stands for
[ = [0 Y axn= ¥ o[ D7),
R R

[v|<k—1 jyi<k-1
Hence, (3.3) is represented with the system of linear equations

Ay, fR D (@) + ayy [ D* (™) + -+ + Gy fR Do (z"™) = _fRDmu
Qy, fR D“’(J:“”) + Gy, jﬁDaz (I‘Yz) 4t Gy fR D2 (ZWN) = — fR D2y

Y

Oy, [ DOV (@) + Ay, [g DOV (27) + -+ ayy [p DM (2™) = ~[rDNu

(3.4)
where a; and ~; are attached to index i for o and ~, respectively, and N is the number .
of all multi indices a with |a| < k — 1. Here, we note that the number of all multi
indices & with |a| < k — 1 is the same with the number of all multi indices vy with
[y| < k — 1, since a and 7 have the same dimension. We may assume that a and v
are the same each other, and that{e,}X ,;{e;, a2, -+ ,an} is arranged in the order
that satisfies some entry of a; is lager than or equal to all entries of a;_;,(i.e. there
exist an entry o j in a; = (01,2, ..., Qiy) such that aij > a1k, V1<Ek < n).

Example of the case of dimension n = 2 and k — 1 = 2 illustrates
{al = (0,0),(!2 = (1,0),0[3 = (0)1))(14 = (lu 1),05 = (2,0),06 = (072)}

Then, we observe that

ai( ;) — { is conmstant,  ifi=j, 5
D% (z7) { 0, if i > 7, (3.5)
because D (z%) = D{*:=%) (D% %), where ot;—0; = (@31 —Qj,1, ¥i,2—Qj,2, - -, Xipn ™

oj ), and obviously a; — a; has some positive entry. Consequently, the coefficient
matrix of (3.4) is
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where C denotes a constant not necessary the same each other. (3.6) is in echelon
form whose diagonal entries is not vanishing. Thus, (3.6) is invertible. In conclusion,

(3.4) has the only solution. Thus, a polynomial p is uniquely determined in Pj_.
u}

LEMMA 3.3. Let R satisfy a strong cone condition. Then (since R is contained
in a sphere of radius p )

[uljp,r < Co* ™ fulk p.r (3.7)

for 0 < j <k—1 for allu € WEP(R) such that the average over R of each D%u is 0
for 0 < |oa| < k— 1, where C is a constant independent of p and u .

Note. Morrey assumes that his domain is strongly Lipschitz, but the proof is
exactly the same if the domain satisfies a strong cone condition. Hence, we may as-
sume that R satisfies strongly Lipschitz. Before proof of Lemma 3.3, we shall state
Poincare’s inequality which is introduced in Evans [3], pp.275 .

Notation. )

(i) (wy = meas) /U u. (i.e. (u)y means the average of u over U. )

o

0z’ Bz,

THEOREM 3.4 (Poincaré’ s inequality). Let U be a bounded, connected, open

subset of R™, with a C! boundary OU. Assume 1 < p < oo . Then there ezists a
constant C, depending only on n,p and U, such that

(i) Du denotes the gradient of u; that is, Du = |

lu — (Wullerwy < CllDull ey (3.8)

for each function v € WYP(U). In particular, there exists a constant C, depending
only on n and p, such that

lu — (WullLewy < Crl|Dull ey (3.9)

for each function u € WHP(B%(z,r)), where B%(z,7) = {y e R" [ [z —y| < r}.

PROPOSITION 3.5. Under the assumptions of Lemma 3.8 and Theorem 8.4, the
above inequality (3.9) implies just the same as (8.7) in Lemma 3.3 for j=0, k=1,
in particular, if u € WP(U) then (3.9) implies just the same as (3.7) in Lemma 3.9
forj=0,1, k=2.
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Proof. We observe at first that || Dul|.»(y) is less than |u|, 1y because

n 2 %
1Duliow) = l1Dullr) (3, p.618) = | (Z (=) ) i)

i=1
n
< Z lgii_lllu(u) ( by Theorem 4.1 in the following section. )
i=1 t

= | Z [ D%ulll Lo (v (by the notation of partial derivative D%. )
lal=1

< X ID%ul|ewy = lulpru  (by (22))

la|=1
Thus, In Theorem 3.4, (3.9) implies
flu = (Wullze) < Crlulpa,u- (3.10)
Since || - || () is equivalent to | - |, 0,u by (2.1) and (2.2), it follows that
[u — (Wvlpov < Crlulp1u. (3.11)

Thus, the above inequality (3.11) is just the same as (3.7) in Lemma 3.3 for j =
0, k =1 since (u)y = 0 from assumption of Lemma 3.3.

Now, let us consider to suppose u € W2P(U). Then D*u € W1P(U) for some a
with |a| = 1 ([3], p.247). We get from (3.10)

[D%u — (D*w)yll oy < CTID*ulp1v, (3.12)
and from assumption of Lemma 3.3 so that
| D%ull ey < Cr|D%ulp1,u. (3.13)

Taking a summation over |a| =1 for (3.13),

> ID%ullewy < Cr 3 ID%uUlp 0. (3.14)

le|=1 le|=1

The left side of the above (3.14) is equivalent to |u|p,1,v by (2.1) and (2.2), and a part
of the right side of (3.14) is

Yo DUy =Y (Y ID2(DW)llpw) = 3 1D ulpy = lulppu.  (3.15)

lal=1 lal=1 8]=1 v1=2 :

Hence, we obtain that for u € W2P(U) satisfying assumptions of Lemma 3.3 and
Theorem 3.4 ,

lulp,1,u < Crlulp2,u, (3.16)
With considering (3.10) and multiplying Cr in both sides of (3.16), consequently
|u|p‘0,u < Cr|u|,,,1,U < C2r2|u|p12,U. (317)

This completes the proof. 0
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Thus we are motivated to verify that a generalization of Theorem 3.4 (Poincaré’s
inequality) implies exactly the Lemma 3.3. It is shown below.

Proof. of lemma 3.3. It is trivial that strongly Lipschitz condition of R satisfies
C? boundary condition. Since u € W*?(R), D*u € W1P(R) for some a with |a| = j.
Hence we can apply (3.9) in Theorem 3.4 (Poincaré’s inequality) since R is contained

in a sphere of radius p. From (3.10) and (2.1) and the assumption that the average
over R of each D%u is 0,

ID%ullpr < ColD*ulpay. (3.18)
Taking a summation over all o with |a| = j for the above inequality,
o IIDullr <Cp S ID%ulpu. (3.19)
jal=j laj=j
The left side of (3.19) is the just |u|, ; g by (2.2), and a part of right side of (3.19) is
> D% = 3 (3 IDPD W)= Y I1Dullpo = fulpi1,0-

lal=j lal=j 18]=1 lvl=5+1
(3.20)
Thus, we get

[ulp,j,r < Cplulp,jt+1,r- (3.21)
Similarly, since D*u € WP'!(R) for each of o with |o| = j +1,...,k — 1 ( [3], p.247

), we obtain

[ulp,j+1,R < Colulpjr2,r
[ulp,j+2,r < Cplulp jts,r

|“|p,k-1,R < Cp|u|p,kﬁ'

Thus, in all,

[ulps.r < Cplulpjs1,r < C?pulpjpar < ... < CE DDy, 5.

This completes the proof. a

Proof. of Theorem 3.1. we shall now prove the right hand inequality of (3.1) in
Theorem 3.1. By Lemma 1 we can choose p € Pi_; such that fR DY(u+p) =0 for
|v] < k — 1. Hence using Lemma 2 it follows that

k

lu+ Bllep,r = D o't +Blpir < Co*lu+ Blipn = Co¥lulpr r- (3.22)
i=0

In the above, the first inequality is derived by our notation, and the second inequality
is shown by using Lemma 2, and the last equality holds since D%p = 0 for each
|o| = k. However, since p € Py_; we have that |[u]llo < |lu + §llkpr. Hence
lullle < Cp*lulk,p,r for each u € WP*(R). The other inequality of (3.1) is easily
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seen from the observation that p*|u+plx p.r = p¥|u|k p,r for any p € Py_; from which
we immediately obtain

k .
P lulkp,r < infpep,_, llu+ pllepr = llullq- 0

Now, the main result of this section is the following theorem.
THEOREM 3.6 (Bramble-Hilbert Lemma). Let F be a linear functional on WP*(R)
which satisfies
(i) |F(u)| < Cllullk,p,r for all u € WP*(R) with C independent of p and u and
(i) F(p) =0 for allp € Py_1.
Then |F(u)| < C1p*|ulk p,r for any u € WP*(R) with C, independent of p and u.
Proof. Since F is linear and satisfies condition (ii),

|[F(u)| = |F(u+p)| forallp€ Pp_1. (3.23)
By condition (i) and (3.23) we have
|F(u)] < Cllu+pllkp,r: (3.24)
Taking the infimum over Pi_; in (3.24) we have
|F(u)] < Cliulllg- (3.25)

The result now follows from Theorem 3.1. 0

4. Consideration on the preceding section. In the preceding section, we
used the following theorem to prove the latter inequality about the equivalence of
norm in (2.4). It seems to be analogous to Jensen’s inequality, but is quite different
from the inequality. It is introduced as an exercise of [6], p.15 .

Notation R* = {z € R| z > 0}
THEOREM 4.1. Let f : Rt — R be a strictly convex function with f(0) < 0.
Assume that a4, ...,a, > 0 and at least two a; are non-zero. Then

n

Zf(ai) <fQ- @)

i=]

Proof. Since f is a strictly convex function on R* | f is satisfied with the require-
ment that

10 = 1) _ fw) - 1) (4.1)

t—s u-—t ’

whenever 0 < s <t < u < oo {[7}, p.61). Furthermore, it follows from (4.1) that

f) = fs) _ fv) = f(u) ‘ (4.2)

t—s v—u

whenever 0 < s <t <u<v < 0.
It is sufficient to prove the statement for the just any two numbers in {aj,...,a,}.
At first, it is trivial that for some non-zero a,

fa) +7(0) < f(a).
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Next, we consider for two non-zero a and b in R*. By applying (4.2),

fla) = J(0) _ fla+) = F(b)

. - (4.3)
We get
fa) = £(0) < fla+b) - f(b). (4.4)
Since f(0) <0,
fa) < f(a) — £(0) < fla+b) — f(b).
Thus, we obtain
fla) + f(b) < fla+D). (4.5)
(We note that strictly inequality incurs here.) Since the preceding method is similarly

used for n elements ay,...,a,, this completes the proof. 0

We need to consider the following corollary to apply the case of concave function
as like that z%, p>1.

COROLLARY 4.2, Let f : Rt — R be a strictly concave function with f(0) > 0.
Assume that a1, ..., an > 0 and at least two a; are non-zero. Then

3 fla) > £ @) o
i=1 1

i=

In the preceding section, let us observe the process of method of proof in from (3.18)
to (3.22). Then we recognize that (3.18) is essentially important, that is, if we assume
(3.18), then the conclusion to (3.22) is deduced naturally. So, we get the following
corollary from this point of observation.

COROLLARY 4.3. Suppose that

|D%ullp,v < CplD%ulp1,us (4.6)

for all D*u € WYP(U) with |a| = j. Then

lulp,5,u < Colulpj+1,u-
In particular, supposing (4.6) for j=0,...,k—1,

lulpou < Colulpau < C?pPlulpay < ... < C*pfulp v,

Moreover,

ullp kv < Co*lulpku,
So, |+ |pk,u is norm-equivalent to || - ||pk,U- 0
The following theorem is introduced as Poincaré-Friedrichs inequality in Braess 5],

p.30. In this paper, however, its proof is not cited in [5], but almost analogous to the
proof of Poincaré’s inequality in [3], p.275 .
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Notation W, ?(U)={ue W"P(U)| u=0 on dU}

THEOREM 4.4 (Poincaré-Friedrichs inequality). Let U be a bounded, connected,
open subset of R™, with a C! boundary OU. Assume 1 < p < 0o . Then there exists
a constant C, depending only on n,p and U, such that

lull Loy < CllDullLr vy (4.7)

for each function u € Wol "P(U). In particular, there ezists a constant C, depending
only on n and p, such that

llulize(B(z,ry) < CTDullLr(B(2,r) (4.8)

for each function u € WHP(B%(z,r)), where BY(z,7) = {y e R" | [z —y| < 7}.

The proof of Thoerem 4.4 only requires zero boundary conditions on a part of the
boundary. It suffices that the function vanishes on a part of a set V, where V' is a set
with positive measure (Braess [5], p.30). The following corollary is a generalization
of Corollary 4.4 from this point of view.

Notation Woly’é’(U) ={u€ WHP(U)| u=0 on V}, where V is a subset of
U with m(V) > 0.

COROLLARY 4.5 (Poincaré-Friedrichs inequality). Let U be a bounded, connected,
open subset of R™, with a C! boundary OU. Assume 1 < p < oo . Then there erists
a constant C, depending only on n,p and U, such that

lull ey < CllDullLey (4.9)
for each functionu € W&’é’(U). 0

Remark. In W&’(;C(R), the condition (ii) that F(p) = 0 for all p € Px_; of The-
orem 3.6 (Bramble-Hilbert Lemma) becomes unnecessary. Thus we get the following
theorem.

THEOREM 4.6. Let F be a linear functional on W(’,’,‘éc (R) which satisfies | F(u)|

Cllullk,p,r for all u € W&};C(R) with C independent of p and u. Then |F(u)]
C10*|ulk,p,r for any u € Wé’,’ok(R) with Cy independent of p and u.

Proof. By Corollary 4.5, since D%u € Wol,‘g'(U) for all @ with |a| =0,...,k—1
we obtain

<
<

|1D%ullpu < C|D%ulp1 v,

from (3.10) and (2.1). This is just the assumption of Corollary 4.3. So, we obtain the
conclusion of the corollary. This completes the proof. o

5. Conclusion and Discussion. If we discuss Poincaré inequality in a
Sobolev space nonvanishing on a set of measure of nonzero, the term of average and
the degree of the Sobolev space are looked upon. In just the above space but vanishing
on a set of measure of nonzero, it is not easy to remove the term of average and to raise
the degree of the Sobolev space. Here, if the term of average is removed, then to raise
the degree of the Sobolev space is obtained naturally. Otherwise, it is very difficult
or impossible on the point of my observation without changing in itself. Bramble and
Hilbert used the result of Morrey to remove the term of average in Poincaré inequality.
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The result of Morrey is to make the term of average be zero by adding a polynomial
of degree of less one than the Sobolev space in the outset. It is deduced originally
from linearly independence of each term of a polynomial. If we consider linearly
independence, we may discover a little application with Bramble-Hilbert Lemma, for
example, to deal with trigonometric polynomial.
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