Signed degree sequences in signed 3-partite graphs

  • Pirzada, S. (Department of Mathematics, University of Kashmir) ;
  • Dar, F.A. (Department of Mathematics, University of Kashmir)
  • 발행 : 2007.06.30

초록

A signed 3-partite graph is a 3-partite graph in which each edge is assigned a positive or a negative sign. Let G(U, V, W) be a signed 3-partite graph with $U\;=\;\{u_1,\;u_2,\;{\cdots},\;u_p\},\;V\;=\;\{v_1,\;v_2,\;{\cdots},\;v_q\}\;and\;W\;=\;\{w_1,\;w_2,\;{\cdots},\;w_r\}$. Then, signed degree of $u_i(v_j\;and\;w_k)$ is $sdeg(u_i)\;=\;d_i\;=\;d^+_i\;-\;d^-_i,\;1\;{\leq}\;i\;{\leq}\;p\;(sdeg(v_j)\;=\;e_j\;=\;e^+_j\;-\;e^-_j,\;1\;{\leq}\;j\;{\leq}q$ and $sdeg(w_k)\;=\;f_k\;=\;f^+_k\;-\;f^-_k,\;1\;{\leq}\;k\;{\leq}\;r)$ where $d^+_i(e^+_j\;and\;f^+_k)$ is the number of positive edges incident with $u_i(v_j\;and\;w_k)$ and $d^-_i(e^-_j\;and\;f^-_k)$ is the number of negative edges incident with $u_i(v_j\;and\;w_k)$. The sequences ${\alpha}\;=\;[d_1,\;d_2,\;{\cdots},\;d_p],\;{\beta}\;=\;[e_1,\;e_2,\;{\cdots},\;e_q]$ and ${\gamma}\;=\;[f_1,\;f_2,\;{\cdots},\;f_r]$ are called the signed degree sequences of G(U, V, W). In this paper, we characterize the signed degree sequences of signed 3-partite graphs.

키워드