A3 A4 A o gxA w4 ¥ AE

LR A g2 BEEHE 2
o oA ol @ RAAM? AL AR e AE
(identification) S & R Ao
EYaydy ¢yAA &L 484 sl FasA
QA &7 s AFEHULE o] A ¢

A
g g A4S M 2AE X3 A2"E A
s

Unknown Threats Detection by Using Incremental
Knowledge Acquisition

Gil-Cheol Park** - Hamid B. M. Cooke*** - Yangsok Kim***
Byeong Ho Kang*** - SangJo Youk** - Geuk Lee**

ABSTRACT

Detecting unknown threats is a paradox ; how do you detect a threat if it is not known to exist?
The answer is that unknown threat detection is the process of making a previously unknown threat
identifiable in the shortest possible time frame. This paper examines the possibility of creating an
unknown threat detection mechanism that security experts can use for developing a flexible protec-
tion system for networks. A system that allows the detection of unknown threats through monitoring
system and the incorporation of dynamic and flexible logics with situational knowledge is described
as well as the mechanisms used to develop such a system is illustrated. The system not only allows
the detection of new threats but does so in a fast and efficient manner to increase the available time
for responding to these threats.

Key words : Threats Management, Network, MCRDR(Multiple Classification Ripples Down Rules)

*

£33

This work was supported by a grant from Security Engineering Research Center of Korea Ministry of
Commerce, Industry and Energy.
Professor of Hannam University

#%x University of Tasmania, Australia

20 FE -2t =FX H7H HM1%(2007.3)

1. Introduction

Unknown threat detection has become a highly
investigated area of the Internet security com-
munity [1-3). Unknown threat detection is the
process of identifying a previously unknown at-
tack by finding the factors that will make it iden—
tifiable for every occasion it appears. This proc—
ess seems paradoxical ; how can unknown threats
be identified if they are unknown? How can these
unknown threats be detected if they are not
known to exist? If an unknown threat is created
perfectly, it can spread without detection until it
is time to strike. However, just as flawless soft—
ware cannot be created ; there is no perfect un-
known threat. The unknown threat will have
some weakness within its operation that will in—
dicate that something suspicious is occurring.
The activities of the threat appear, analogous to
a human illness, as symptoms on the host ma-
chine. After careful examination these symptoms
will identify the existence of a problem and hence
the unknown threat.

An intrusion detection system (IDS) is a de-
vice that monitors the activity of a network in
an attempt to identify malicious activity [4]. Ge-
nerally IDS can be classified into two types :
signature based and anomaly based. The sig—
nature based IDS is less complex than the anom-
aly based IDS and so it can be implemented suc—
cessfully in both perimeter based and host based
security strategies[5]. The anomaly-based IDS is
complex and processor intensive and is typically
seen in the perimeter based security strategy[7].

This research focuses on reducing response
times and decreasing the time it takes to classify

an unknown attack. In addition to the decreasing

identification time, the unknown threat detection
sySterh will ensure that while it identifies un-
known threats, normal conditions are not identi—
fied as threats and that a threat is not classified
as normal traffic. This paper, in Section 2, the
aims of the research system are described with
reference to the background and the issues per—
taining to the domain. Experiment results and
their analyses are discussed in Section 3. Finally

conclusions will be provided in Section 4.

2. Methodology

2.1 Aim of the System

To be successful in detecting unknown attacks
the system will need to possess the following
features :

Firstly, the system is able adapt to the dynam-
ic environment of networks. This caters for the
fact that traffic on networks is always changing
due to factors such as new network protocols and
software. In addition to this the attacks that are
occurring are changing dynamically as old at-
tacks mutate and new attacks are formulated. To
facilitate this feature the system uses an expert
system in order to develop a constantly -evolving
knowledge base. The evolving knowledge base
requires a system to provide easy maintenance
of the knowledge it contains. To provide this fea—
ture for the knowledge base the system will use
the multiple classification ripples down rules (MC
RDR) knowledge acquisition techniquel8, 9].

Secondly, a monitoring system that creates too
many false positives will induce a dismissive at—

titude in the security expert. As this‘ monitoring

system produces more false alarms the security
expert will be more likely to ignore each alarm
as another false positive. This repeated genera-
tion of false alarms within a monitoring system
occurs because of over generalized logics that are
used for identifying an attack. In addition the
thresholds for the network activities could be set
too low. The system solves this problem by using
a flexible logic engine where the thresholds can
be dynamically adjusted and the logics adapted
to better identify the threats.

2.2 MCRDR Knowledge Acquisition

2.2.1 Rule Tree

In the implemented system a tree data struc-
ture was created in addition to the functions for
interacting with the rule structure. The process
of rule addition, refinement and manipulation wi-
thin the system are transparent to ensure that the
knowledge base does not get corrupted and to not
burden the expert with undue operations.

2.2.2 Inference

The process of knowledge acquisition in terms
of the security monitoring system is as follows :
The packet capturing module is started and it be—
gins acquiring network traffic data. The case
time period elapses and the case data is created.
The case data is fed through to the inference en-
gine and the MCRDR process begins. Firstly
each rule on the first level is compared with the
case data to see whether the conditions are
satisfied. If the rule is satisfied it is fired and the
children of this rule are considered. This process
repeats with the children and so forth until none
of the fired rule’s children has fired.

Mg XM o oF YR o2 Agel dE 21

2.2.3 Knowledge Acquisition

The expert determines whether the conclusion
was correct or not by observing the case data
and what conclusions where produced with which
rule. If it ‘was correct, process the other case/s
otherwise the conclusion was not correct and so
the expert selects which rules concluded in-
correctly or to adds a completely new classifi-
cation. If the expert has determined that a rule
has concluded incorrectly, the system show the
difference list between one of the cornerstone
cases that exist for the incorrect rule and the cur-
rent case data. The expert can select the corner-
stone cases that he/she wishes to let match this
rule’s conditions. If the expert selects all of the
remaining cornerstones to let match then the new
rule is valid and is added as a refinement (child)
of the incorrect rule with the selected conditions
and the current case data as the cornerstone.
Otherwise the expert is presented with the dif-
ferences between the current case and one of the
remaining cornerstones. This process continues
until there are no cornerstones in the list or the
expert select the all of the remaining cornerstone
case data that will be allowed to match. Then the
new rule is added as a refinement of the incorrect
rule with the conditions selected and the current

case data as the cornerstone.

2.2.4 Validation Process

In addition to the validation process ensuring
that the new logics do not incorrectly fire an ex-
isting logic the system also checks to see wheth-
er the conditions are valid. This is because the
conditions are displayed but they are able to be
edited. If the edited condition does not satisfy the

existing case data then it is deemed invalid and

22 M5 - 8ot =X M7H H1%(2007.3)

must be corrected. The invalidation continues
until the edited condition satisfies the existing

case data.

2.3 System Design and Implementation
Issues

(Figure 1) illustrates the abstract design of the
system. The thing to observe is that the network
traffic thread, and hence packet capturing, is exe—
cuted in parallel with the main system thread.
Parallel execution allows the real-time execution
of the monitoring system without packet loss.
The following issues were raised while im-

plementing the system.

Locking Meckaism
Network Traftie s
Tioesd

Packet Hoader

N
|

Netwerk
| I e

(Figure 1) Overall System Design

2.3.1 Packet Loss

In order to detect attacks in progress the sys—
tem must collect every packet that is received or
sent on the host network. If any packets are not
captured then it will impede the knowledge ac-
quisition process. The lost packets may contain
information that is vital to an attack pattern be-
ing detected. With this issue in mind the system

was designed such that the packet capturing en-
gine is run in parallel with the other system pro-

cesses.

2.3.2 Case Window Size

The time interval between cases being created
is the window size. The window size determines
the amount of network traffic is inputted into the
analysis engine before the case is created. The
selection of the window period will affect the
overall system in a number of ways. Having the
window size set to a small value will mean that
there won't be much data to build a case from.
A small window size may also mean that anom-
alous patterns may be misclassified as normal
traffic as the expert will not see all of the in-
formation relevant to an attack. Having the win~
dow size set to a large value will mean that there
will be a significant amount of data processed
before a case is created. A large window size
forces the system to deal with a significant
amount data and the resultant memory require-
ments. In the experiments the window size was
set to twenty. The packet capturing module ob-
tains information from the network for twenty
packets and then it analyses the data, builds
summary information of that data, and then cre-
ates a case. While the analysis engine computes
the summary information the packet capturing
module continues to gather network information

for the next case.

2.3.3 Storage of the Captured Data

Every packet has headers that contain im-
portant information necessary for transmission
through a network medium. Once collected the
network header data that the packet capturing

module gathers is stored in a database. This in—
formation is stored in the database in two parts,
the important packet information and the case
data created from the network header data. In
addition to the storage of packet information in
the database every single packet and most of the
header information is stored in a separate text
file. This is so that the expert can get an ex—
tremely detailed analysis of the traffic.

2.4 Experiment Design

In order to test a system that identifies un—
known threats it would be impossible to have an
unknown threat attack situation. The assumption
used for testing is that at some point in comput-
ing history the attacks were not known and had
to be identified through some means. So testing
of the system was carried out by identifying can—
didate threats and creating or downloading the
source code for an attack. Meanwhile the expert
will identify the patterns and subsequent con-
ditions that best represent and identify the attack
from the norm. The candidate threats were se-
lected from a varying mix of complexity and
what type of systems the threat would typically
attack, such as mainly server oriented. The fol-
lowing two threats were used in the experiments.

2.4.1 Denial of Service

Two different forms of this threat were se—
lected for testing. First a basic denial of service
attack, ping flooding, which can affect both nor-
mal type hosts and servers was selected. Next
a server oriented denial of service attack that is
directed at E-Mail servers, mail bombing, was
selected.

AF XA ZHo| ot dXIX| Y2 HEe HE 23

2.4.2 Worm Attack

Worms are a form of virus that can propagate
using their own means. A Worm will scan for
active vulnerable machines and then mobilizes to
infect it. In this experiment a worm simulation
was created and used by a monitored host to at-
tack another monitored machine. The worm sim-
ulation provided was not identified ahead of time
and the expert had to identify discriminating pat-
terns from analysis. The worm displayed curious
properties that are detailed in the results section.

3. Results

3.1 Rule Creation

The monitoring system captures the network
data in real-time and buffers the cases in a data-
base so that the expert can concentrate on the
case that he/she is analyzing. What typically oc-
curs is the expert will fall behind the current cas-
es being collected. However when the monitoring
system concludes correctly on a case, and the ex-
pert has confirmed this, then the expert will catch
up to the current traffic analysis data. So the
more correct conclusions the system produces,
the closer the expert will be to approaching the
currently captured data. The following sections
illustrate the time it took the expert to create
rules, in the peak threat and the incremental

threat pattern types.

3.1.1 Peak Threat Patterns

The peak threat patterns are easier to discover

and classify as these patterns contain conditions

24 HE 2ot =EX| M7 H1%(2007.3)

that exhibit obvious activity spikes when the host
is under attack. The expert simply observes the
spiking condition/s and creates rules based on
these conditions. (Figure 2) (a) shows the times
taken to add rules in the Ping Flood experiment.
As can be observed the time taken to add rules
to identify this Denial of Service attack averaged

around 2 minutes 30 seconds.

3.1.2 Incremental Threat Pattern

The incremental threat patterns are more diffi-
cult to create rules for due to the more intensive
analysis required by the expert to identify the
pattern. The in-depth analysis is required be-
cause the expert wanting to ensure that correct
conditions are being selected to identify the
threat to reduce false positives. Also, due to the
condition patterns being more difficult to identify,
the expert will usually .create more abstract rules.
As more rules are created the average number
of cornerstone cases from which to validate aga—
inst increase. This has the effect of lengthening
the validation/revalidation cycle. (Figure 2) (b)
shows the times taken to add rules in the Worm
experiment. As can be observed from the results
the average time to add a rule in the Worm ex-
periment was around 3 minutes 15 seconds. Also
there exists a slight trend for the rule creation
time to increase as the number of rules in the
system increased and hence the number of cor—
nerstone cases that need to be validated against
also increased. Overall rule addition within the
monitoring system averaged around three minu-
tes. The majority of this time was used by the
expert to ensure analysis all of relevant data so
that no threat patterns were left undiscovered

and normal traffic conditions misclassified. The

process of rule addition within the monitoring
system is trivial and the time taken for rule crea-
tion is comparable to other existing systems. Ob-
servations of experts maintaining the GARVIN
ES1 system showed that the time taken to add
rules for each case, whether refinements of pre-
vious rules or completely new classifications, ave—

raged around ten per hour [10].

Time Taken for Case Rule Creation

N

160 /

' 140 ~—

T+ Creation Time
80 | == Average Time: 141.33

(Puoosg)atul).
S

o
o

0 1 2 3 4
Rule

(a) Ping Flood

Time Taken for Case Rule Creation

250 zas
I T

200 o

|~ Creation Time
;- Average Time: 194.44.

(PUoOSS)BL L
g g

Rule

(b) Worm
(Figure 2) Rule Creation Time

3.2 Accuracy of Threat Detection

The accuracy of the monitoring system in
threat detection is a true measure of the perform-
ance and capabilities of such a system. If the
monitoring system was inaccurate in identifying
threats then the usability ‘of such a system rap-
idly diminishes. The accuracy of threat detection

in the system is dependent on the expert being
able to establish the logics that will identify the
threat now and in the future. The expert does not
necessary have to know about every single
threat, known and unknown, rather he/she has
to apply an understanding of the situation aspects
that will identify the threat symptoms.

(Figure 3) (a) shows the accuracy of the mon-
itoring system in identifying a Peak Threat
Pattern ; ping flooding. The results show that at
first the monitoring system cannot identify the
threat at all. This is due to there being no logics
and situational data to identify the threat. How-
ever, as the expert begins adding the logics and
knowledge for threat identification the accuracy
of the monitoring system improves dramatically.
This improvement progresses to a point where
the monitoring system is identifying the threat
around 90% of the time. A similar scenario occurs
for the threat detection accuracy for the in-
cremental threat patterns.

(Figure 3) (b) shows that, although it takes
longer to achieve consistent accuracy above 50%
due to the expert creating more abstract logics,
the monitoring system eventually reaches 91%
accuracy in identifying the Worm threat. Results
of this nature show that, even though it may take
the expert some time to develop the correct logics
for identifying any threat, in the long term the
monitoring system will be able to adapt and iden-
tify any threat with a minimum of false alarms.

The results from the experimentation show
that generalized threat patterns at the network
level of a host system do exist. The results also
indicate that the monitoring system is flexible
and can dynamically adapt its logics and thresh-
olds to identify threats on the individual hosts.
In addition to these factors the monitoring sys-

A% XY ZHo| 2AF U4HRIX| IR HEe HAE 25

tem reduces the burden upon an expert in the
task of creating and refining the rules within the
system, to a point where adding rules becomes
a trivial task that can be achieved in a minimal
amount of time. The monitoring system also ach-
ieves these features and functions while still
maintaining threat detection accuracy and keep—

ing false alarms to a minimum.

Threat Detection Accuracy

100%
%%
80%
70%
60%
50%
w— Y
o
|
ol
ol 1
0 5 1 5 2w B W B @ 4 0
Case Number
(a) Ping Flooding
Threat Detection Accuracy
100%
0%
80%
70%
P
o LV
pl
30%
e ||
10%I
" w w ®» @ % ® 1 © @ w0

Case Number

(b)Worm
(Figure 3) Detection Accuracy

4. Conclusion

This research focused on the production of a
monitoring system that detects unknown net-—

work threats. The monitoring system is driven

26 HE - 2ot =X M7 M1£(2007.3)

by logics which allow the expert to correctly
identify network threat patterns as they manifest
on a host. The logics that are developed over time
will give the expert a clear understanding of the
way in which the unknown threats behave on the
various hosts. The addition of these logics within
the system is dynamic and flexible ; allowing the
expert to create generalized rules that can be fur—
ther refined or a series of quite specific threat de—
fining rules. The results show that the addition
of rules and situational knowledge within the
monitoring system is a trivial task for the expert.
This gives the expert more time to extract, adapt
and apply the knowledge throughout the moni-
tored network. This reduces the response time
to the previously unknown threat on the moni-
tored network. Having an effective response to
an unknown threat requires that the system that
alerts the expert must be accurate. The experi—
ment results show that the accuracy of the mon-
itoring system, after the addition of some of the
threat defining logics, is high. The accuracy of
the system is always improving as the system
is run and the logics are refined. This accuracy
will keep the number of false positives (false al-
arms) to a minimum so that the expert is not con-
ditioned into ignoring the system alerts. Finally
it can be concluded that the attainment of the pre-
vious aims has proven that the use of MC RDR
within the network security domain was succe-

ssfully applied and is valid within this domain.

References

[1] A. K. Ghosh, J. Wanken, and F. Charron,

“Detecting anomalous and unknown intru-

sions against programs”, in 14th Annual Com-
puter Security Applications Conference (AC
SAC '98), 1998.

[2] P. W. Hodgson, “The threat to identity from
new and unknown malware”, BT Technolo-
gy Journal 2005, Vol. 23, No. 4, pp. 107-112,
2005.

[3] S. Singh, et al., The EarlyBird System for
Real-time Detection of Unknown Worms,
2003, UCSD.

[4] R. Janakiraman, M. Waldvogel, and Q. Zhang,
Indra : A peer—-to—peer approach to network
intrusion detection and prevention in Procee-
dings of the Twelfth International Workshop
on Enabling Technologies : Infrastructure for
Collaborative Enterprises 2003 IEEE Com-
puter Society, p. 226, 2003.

[5] S. Lorimer, A Real-Time IDS Monitoring
Multiple Gateways, in Computing, Univer-
sity of Tasmania : Hobart. p. 73, 2003.

[6] C. P. Pfleeger and S. L. Pfleeger, Security in
computing, 3rd Int ed. 2003, Upper Saddle
River, N.]J. : Prentice Hall PTR. xxix, 746,
2003.

[7] S. Axelsson, Intrusion Detection Systems :
A Survey and Taxonomy, in Department of
Computer Engineering, Chalmers University
of Technology : Goteborg, p. 27, 2000.

[8] B. Kang, P. Compton, and P. Preston. Multi-
ple Classification Ripple Down Rules : Eva-
luation and Possibilities, in 9th AAAI-Spon-
sored Banff Knowledge Acquisition for Kno-

~ wledge-Based Systems Workshop, Banff, Ca-
nada, University of Calgary, 1995.
[9] B. H. Kang, W. Gambetta, and P. Compton,

Verification and validation with ripple-down

rules. International Journal of Human-Com-
puter Studies, Vol. 44, No. 2, pp. 257-269,
1996.

{10] P. Compton, and R. Jansen, A philosophical
basis for knowledge acquisition, in 3rd euro-
pean knowledge acquisition for knowledge
based systems workshop, 1989.

Gil-Cheol Park
19793 ~1983'd HanNam Univ.
(BA)

19333 ~ 19853 SungSil Univ.,,
Graduate School (MA)

1994d ~ 1998 SungKunKwan
Univ., Graduate School
(Ph.D)

198513 ~1990'd SamSung Advanced Institute of
Technology

1991d ~19963 DaeKyo Computer Co., LTD.

199613 ~1998' 3 HanSeo University, Professor

20051 Visiting Professor of UTAS., Australia

19983 ~Now HanNam Univ., Professor

Yang Sok Kim
19873 ~1995d University of
Seoul
19941 ~ 20013 Hyundai
Information
Technology Co., Ltd
20013 ~2002@ E-2 Corporation
2002\ ~2004 University of Tasmania (MA)
20053 ~Now University of Tasmania, Australia,
PhD Student

A% R4 ol 28t LXK G2 AP HE 27

Byeong Ho Kang

1982 ~1988d Pusan National
University

19883 ~1990 University of
Tasmania, Australia
(MA)

199013 ~ 19953 New South
Wales Univ., Australia
(PhD)

199513 ~ 19963 Hitachi Advance Research Lab,
Japan, Research Fellow '

19963 ~1999d Hoseo University, Assistant
Professor

2000 ~Now University of Tasmania, Australia,
Senior Lecturer

Hanmid B. M. Cook

200231 ~ 20053 University of Tasmania
20053 ~2006d University of Tasmania (MA)

Sang Jo Youk

19833 ~1990d HanNam Univ.
19923 ~1994d HanNam Univ.,
Graduate School (MA)
19973 ~ 20043 HanNam Univ,,
Graduate School (Ph.D)
20043 ~2005% YoungDong
Univ, Professor
200613 ~Now HanNam Univ., Professor

Geuk Lee

1978'3 ~1983 KyungPook
Univ.

19843 ~1986*3 Seoul Univ.,
Graduate School (MA)

19883 ~1993d Seoul Univ.,
Graduate School (Ph.D)

19953 ~1996'3d Visiting Professor., Univ. of CA.
at Irvine

198611 ~Now HanNam Univ., Professor

