References
- S. Liu, F. K. Chang, S. Liu. and F. K. Chang, Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter, J. Compos. Mater. 28, 940-977 (1994) https://doi.org/10.1177/002199839402801004
- S. A. Hichen and R. M. J. Kemp, The effect of stacking sequence on impact damage in a carbon fiber/epoxy composite, Composites 26, 207-214 (1995) https://doi.org/10.1016/0010-4361(95)91384-H
- T.-W. Shyr and Y.-H. Pan, Impact resistance and damage characteristics of composite laminates, Compos. Struct. 62, 193-203 (2003) https://doi.org/10.1016/S0263-8223(03)00114-4
- T. Ishikawa, S. Sugimoto, M. Matsushima and Y. Hayashi, Some experimental findings in CAI tests of CF/PEEK and conventional CF/EPOXY flat plates, Compos. Sci. Technol. 55, 349-362 (1995) https://doi.org/10.1016/0266-3538(95)00079-8
- E. F. Dost, L. B. Ilcewicz and W. B. Avery, The effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates, ASTM STP 1110, 476-500 (1991)
- P. O. Sjoblom, J. T. Hartness and T. M. Cordell, On low-velocity impact testing of composite materials, J. Compos. Mater. 22, 30-52 (1988) https://doi.org/10.1177/002199838802200103
- E. Wu and K. Shyu, Response of composite laminates to contact loads and relationship to lowvelocity impact, J. Compos. Mater. 27, 1443-1464 (1993) https://doi.org/10.1177/002199839302701502
- S. M. Lee and P. Zahuta, Instrumented impact and static indentation of composites, J. Compos. Mater. 25, 204-222 (1991) https://doi.org/10.1177/002199839102500205
- H. Kaczmarek and S. Maison, Comparative ultrasonic analysis of damage in CFRP under static indentation and low-velocity impact, Compos. Sci. Technol. 51, 11-26 (1994) https://doi.org/10.1016/0266-3538(94)90152-X
- F. Aymerich, P. Priolo and D. Vacca, Static loading and low-velocity impact characterization of graphite/PEEK laminates, The e-Journal of Nondestructive Testing 4, 3 (1999)
- H. Razi and A. S. Kobayashi, Delamination in cross-ply laminated composite subjected to lowvelocity impact, AIAA J. 31, 1498-1502 (1993) https://doi.org/10.2514/3.11800
- S. Liu and F. K. Chang, Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter, J. Compos. Mater. 28, 940-977 (1994) https://doi.org/10.1177/002199839402801004
- O. Allix and P. Ladeveze, Damage analysis of interlaminar fracture specimens, J. Compos.Mater. 31, 61-74 (1995)
- V. Albouyso, O. Allix, P. Ladevèze and D. Leveque, Interfacial Approach of Delamination: Possibilities and Difficulties, in: Proc. ICCM-12, Paris, France, CD-Rom (1999)
- Y. Mi, M. A. Crisfield, G. A. O. Davies and H. B. Hellweg, Progressive delamination using interface elements, J. Compos. Mater. 32, 1246-1273 (1998) https://doi.org/10.1177/002199839803201401
- C. Alfano and M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Meth. Engng. 50, 1701-1736 (2001) https://doi.org/10.1002/nme.93
- W. Sprenger, F. Gruttmann andW.Wagner, Delamination growth analysis in laminated structures with continuum-based 3D-shell elements and a viscoplastic softening model, Comput. Meth. Appl. Mech. Engng. 185, 123-139 (2000) https://doi.org/10.1016/S0045-7825(99)00255-8
- D. S. Dudgale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960) https://doi.org/10.1016/0022-5096(60)90013-2
- G. I. Barenblatt, Mathematical theory of equilibrium cracks in brittle failure, Adv. Appl. Mech. 7, 55-129 (1962) https://doi.org/10.1016/S0065-2156(08)70121-2
- A. Hillerborg, M. Modeer and P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 6, 773-782 (1976) https://doi.org/10.1016/0008-8846(76)90007-7
- A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech. 54, 525-531 (1987) https://doi.org/10.1115/1.3173064
- A. Needleman, An analysis of decohesion along an imperfect interface, Int. J. Fracture 42, 21-40 (1990) https://doi.org/10.1007/BF00018611
- S. El-Sayed and S. Sridharan, Predicting and tracking interlaminar crack growth in composites using a cohesive layer model, Composites Part B 32, 545-553 (2001) https://doi.org/10.1016/S1359-8368(01)00030-0
- G. Lin, P. H. Geubelle and N. R. Sottos, Simulation of fiber debonding with friction in a model composite pushout test, Int. J. Solids Struct. 38, 8547-8562 (2001) https://doi.org/10.1016/S0020-7683(01)00085-3
- R. Borg, L. Nilsson and K. Simonsson, Modeling of delamination using a discredited cohesive zone and damage formulation, Compos. Sci. Technol. 62, 1299-1314 (2002) https://doi.org/10.1016/S0266-3538(02)00070-2
- C. G. Davila, Mixed mode decohesion elements for analyses of progressive delamination, in: Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, AIAA paper 2001-1486 (2001)
- V. K. Goyal, E. R. Johnson, C. G. Davila and N. Jaunky, An irreversible constitutive law for modeling the delamination process using interface elements, in: Proc. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Denver, CO, AIAA paper 2002-1576 (2002)
- A. Cornec, I. Scheider and K. H. Schwalbe, On the practical application of the cohesive model, Engng. Fracture Mech. 70, 1963-1987 (2003) https://doi.org/10.1016/S0013-7944(03)00134-6
- Y. Aoki and H. Suemasu, Damage analysis in composite laminates by using interface element, Adv. Compos. Mater. 12, 13-22 (2003) https://doi.org/10.1163/156855103322320347
- Advanced Composites Database System, JAXA-ACDB; Ver.04-1, http://www.jaxa-acdb.com/
- T. Ishikawa and M. Matsushima, in: Proc. of the 9th US-Japan Confer. Compos. Mater., Shizuoka, pp. 133-140 (2000)
- SACMA Recommended Method SRM 2R-94, Suppliers of Advanced Composite Materials Association, Arlington, VA (1994)
- S. Abrate, Impact on Composite Structures. Cambridge University Press (1998)
- ABAQUS Ver.6.4 Analysis User's Manual Vol. I-IX, ABAQUS, Inc. (2003)