Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro (Advanced Composite Evaluation Technology Center, Japan Aerospace Exploration Agency) ;
  • Suemasu, Hiroshi (Department of Mechanical Engineering, Sophia University) ;
  • Ishikawa, Takashi (Advanced Composite Evaluation Technology Center, Japan Aerospace Exploration Agency)
  • Published : 2007.03.01

Abstract

This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Keywords

References

  1. S. Liu, F. K. Chang, S. Liu. and F. K. Chang, Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter, J. Compos. Mater. 28, 940-977 (1994) https://doi.org/10.1177/002199839402801004
  2. S. A. Hichen and R. M. J. Kemp, The effect of stacking sequence on impact damage in a carbon fiber/epoxy composite, Composites 26, 207-214 (1995) https://doi.org/10.1016/0010-4361(95)91384-H
  3. T.-W. Shyr and Y.-H. Pan, Impact resistance and damage characteristics of composite laminates, Compos. Struct. 62, 193-203 (2003) https://doi.org/10.1016/S0263-8223(03)00114-4
  4. T. Ishikawa, S. Sugimoto, M. Matsushima and Y. Hayashi, Some experimental findings in CAI tests of CF/PEEK and conventional CF/EPOXY flat plates, Compos. Sci. Technol. 55, 349-362 (1995) https://doi.org/10.1016/0266-3538(95)00079-8
  5. E. F. Dost, L. B. Ilcewicz and W. B. Avery, The effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates, ASTM STP 1110, 476-500 (1991)
  6. P. O. Sjoblom, J. T. Hartness and T. M. Cordell, On low-velocity impact testing of composite materials, J. Compos. Mater. 22, 30-52 (1988) https://doi.org/10.1177/002199838802200103
  7. E. Wu and K. Shyu, Response of composite laminates to contact loads and relationship to lowvelocity impact, J. Compos. Mater. 27, 1443-1464 (1993) https://doi.org/10.1177/002199839302701502
  8. S. M. Lee and P. Zahuta, Instrumented impact and static indentation of composites, J. Compos. Mater. 25, 204-222 (1991) https://doi.org/10.1177/002199839102500205
  9. H. Kaczmarek and S. Maison, Comparative ultrasonic analysis of damage in CFRP under static indentation and low-velocity impact, Compos. Sci. Technol. 51, 11-26 (1994) https://doi.org/10.1016/0266-3538(94)90152-X
  10. F. Aymerich, P. Priolo and D. Vacca, Static loading and low-velocity impact characterization of graphite/PEEK laminates, The e-Journal of Nondestructive Testing 4, 3 (1999)
  11. H. Razi and A. S. Kobayashi, Delamination in cross-ply laminated composite subjected to lowvelocity impact, AIAA J. 31, 1498-1502 (1993) https://doi.org/10.2514/3.11800
  12. S. Liu and F. K. Chang, Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter, J. Compos. Mater. 28, 940-977 (1994) https://doi.org/10.1177/002199839402801004
  13. O. Allix and P. Ladeveze, Damage analysis of interlaminar fracture specimens, J. Compos.Mater. 31, 61-74 (1995)
  14. V. Albouyso, O. Allix, P. Ladevèze and D. Leveque, Interfacial Approach of Delamination: Possibilities and Difficulties, in: Proc. ICCM-12, Paris, France, CD-Rom (1999)
  15. Y. Mi, M. A. Crisfield, G. A. O. Davies and H. B. Hellweg, Progressive delamination using interface elements, J. Compos. Mater. 32, 1246-1273 (1998) https://doi.org/10.1177/002199839803201401
  16. C. Alfano and M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Meth. Engng. 50, 1701-1736 (2001) https://doi.org/10.1002/nme.93
  17. W. Sprenger, F. Gruttmann andW.Wagner, Delamination growth analysis in laminated structures with continuum-based 3D-shell elements and a viscoplastic softening model, Comput. Meth. Appl. Mech. Engng. 185, 123-139 (2000) https://doi.org/10.1016/S0045-7825(99)00255-8
  18. D. S. Dudgale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960) https://doi.org/10.1016/0022-5096(60)90013-2
  19. G. I. Barenblatt, Mathematical theory of equilibrium cracks in brittle failure, Adv. Appl. Mech. 7, 55-129 (1962) https://doi.org/10.1016/S0065-2156(08)70121-2
  20. A. Hillerborg, M. Modeer and P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 6, 773-782 (1976) https://doi.org/10.1016/0008-8846(76)90007-7
  21. A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech. 54, 525-531 (1987) https://doi.org/10.1115/1.3173064
  22. A. Needleman, An analysis of decohesion along an imperfect interface, Int. J. Fracture 42, 21-40 (1990) https://doi.org/10.1007/BF00018611
  23. S. El-Sayed and S. Sridharan, Predicting and tracking interlaminar crack growth in composites using a cohesive layer model, Composites Part B 32, 545-553 (2001) https://doi.org/10.1016/S1359-8368(01)00030-0
  24. G. Lin, P. H. Geubelle and N. R. Sottos, Simulation of fiber debonding with friction in a model composite pushout test, Int. J. Solids Struct. 38, 8547-8562 (2001) https://doi.org/10.1016/S0020-7683(01)00085-3
  25. R. Borg, L. Nilsson and K. Simonsson, Modeling of delamination using a discredited cohesive zone and damage formulation, Compos. Sci. Technol. 62, 1299-1314 (2002) https://doi.org/10.1016/S0266-3538(02)00070-2
  26. C. G. Davila, Mixed mode decohesion elements for analyses of progressive delamination, in: Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, AIAA paper 2001-1486 (2001)
  27. V. K. Goyal, E. R. Johnson, C. G. Davila and N. Jaunky, An irreversible constitutive law for modeling the delamination process using interface elements, in: Proc. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Denver, CO, AIAA paper 2002-1576 (2002)
  28. A. Cornec, I. Scheider and K. H. Schwalbe, On the practical application of the cohesive model, Engng. Fracture Mech. 70, 1963-1987 (2003) https://doi.org/10.1016/S0013-7944(03)00134-6
  29. Y. Aoki and H. Suemasu, Damage analysis in composite laminates by using interface element, Adv. Compos. Mater. 12, 13-22 (2003) https://doi.org/10.1163/156855103322320347
  30. Advanced Composites Database System, JAXA-ACDB; Ver.04-1, http://www.jaxa-acdb.com/
  31. T. Ishikawa and M. Matsushima, in: Proc. of the 9th US-Japan Confer. Compos. Mater., Shizuoka, pp. 133-140 (2000)
  32. SACMA Recommended Method SRM 2R-94, Suppliers of Advanced Composite Materials Association, Arlington, VA (1994)
  33. S. Abrate, Impact on Composite Structures. Cambridge University Press (1998)
  34. ABAQUS Ver.6.4 Analysis User's Manual Vol. I-IX, ABAQUS, Inc. (2003)