난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex

  • 김윤선 (포천중문 의과대학교 생명과학전문대학원) ;
  • 윤세진 (차병원 여성의학연구소) ;
  • 김은영 (차병원 여성의학연구소) ;
  • 이경아 (포천중문 의과대학교 생명과학전문대학원)
  • Kim, Yun-Sun (Graduate & School of Life Science and Biotechnology, Pochon CHA University College of Medicine) ;
  • Yoon, Se-Jin (CHA Research Institute, Fertility Center, CHA General Hospital) ;
  • Kim, Eun-Young (CHA Research Institute, Fertility Center, CHA General Hospital) ;
  • Lee, Kyung-Ah (Graduate & School of Life Science and Biotechnology, Pochon CHA University College of Medicine)
  • 발행 : 2007.06.30

초록

목 적: 본 연구진은 선행연구를 통하여 생쥐의 미성숙 난자와 성숙 난자 사이에 차이 나게 발현하는 유전자(DEGs)의 목록을 보유하고 있는데, 그 중에서 pentose phosphate pathway (PPP)에 필수적 효소인 Ribose 5-phosphate isomerase A (Rpia)를 선택하여 본 연구를 수행하였다. 난자 성숙 과정에 관련된 Rpia의 기능을 알아보기 위한 기초연구로서 생쥐와 돼지의 난소에서 Rpia의 발현을 비교분석 하였다. 연구방법: 생쥐의 각 조직에서 11개의 MII-selective DEGs의 발현을 RT-PCR방법으로 확인하여 난소에서 강하게 발현하는 4개의 유전자를 선택하였고, 다시 이들 4개 유전자 중 난자에서 높게 발현하는 Rpia를 선택하여 생쥐 및 돼지의 난자, 난구세포, 과립세포에서의 발현을 비교분석 하였다. 돼지 Rpia 염기서열은 밝혀져 있지 않아 EST clustering 기법을 통해 동정하였다. 결 과: EST clustering 기법으로 찾아낸 돼지 Rpia 염기서열은 GenBank에 등록하였고 (Accession Number EF213106), 이를 근거로 primer를 작성하여 RT-PCR을 수행하였다. Rpia 유전자는 생쥐에서는 난자 특이적으로 발현하는 반면 돼지에서는 난자, 난구세포, 과립세포에서 모두 발현하는 차이점을 발견하였다. 결 론: 본 연구는 생쥐와 돼지의 난소에서 Rpia유전자 동정에 대한 첫 보고로서, 본 연구결과로부터 생쥐와 돼지의 COCs는 서로 다른 경로로 포도당의 대사가 일어나는 것을 알 수 있었다. 따라서 이와 같은 차이점이 두 종의 난자를 체외 배양할 때 나타나는 난자 성숙률의 차이를 가져오는 기전 중의 하나가 아닐까 추측된다. 난자 성숙을 조절하는 기전을 연구함과 동시에 체외에서 난자 성숙이 어려운 종의 최적의 IVM (in vitro maturation)조건을 찾기 위해서는 앞으로 난자와 주변세포의 포도당 대사과정에 미치는 Rpia의 기능에 대한 후속연구가 필요할 것으로 사료된다.

Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.

키워드

참고문헌

  1. Yoon SJ, Chung HM, Cha KY, Kim NH, Lee KA. Differentially expressed mRNA profiles between immature germinal vesicle (GV) and mature metaphase II (MII) mouse oocytes. Dev. Reprod 2004; 8: 35-42
  2. Bames FL, Sirad MA. Oocyte maturation. Semin Reprod Med 2000; 18: 123-31 https://doi.org/10.1055/s-2000-12551
  3. Sirard MA. Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenol 2001; 55: 1241-54 https://doi.org/10.1016/S0093-691X(01)00480-0
  4. Yoon SJ, Koo DB, Park JS, Choi KH, Han YM, Lee KA. Role of cytosolic malate dehydrogenase in oocyte maturation and embryo development. Fertil. Steril 2006; 86(S3): 1129-36 https://doi.org/10.1016/j.fertnstert.2006.02.105
  5. Colton SA, Humpherson PG, Leese HJ, Downs SM. Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biol Reprod 2003; 69: 761-70 https://doi.org/10.1095/biolreprod.102.013649
  6. Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod 1998; 58: 1084-94 https://doi.org/10.1095/biolreprod58.4.1084
  7. Sato H, Iwata T, Hayashi K, Kimura T, Kuwayarna Y, Monji Y. The effect of glucose on the progression of the nuclear maturation of pig oocytes. Anim Reprod Sci 2007; 99: 299-305 https://doi.org/10.1016/j.anireprosci.2006.05.008
  8. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995; 9: 131-6
  9. Kimura NK, Konno Y, Miyoshi K, Matsumoto H, Sato E. Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocytes complexes during in vitro maturation. Biol Reprod 2002; 66: 707-17 https://doi.org/10.1095/biolreprod66.3.707
  10. Yan W, Ma L, Stein P, Pangas SA, Bums KH, Bai Y, et al. Mice deficient in oocyte-specific oligoadenylate synthetaselike protein OASlD display reduced fertility. Mol Cell Biol 2005; 25: 4615-24 https://doi.org/10.1128/MCB.25.11.4615-4624.2005
  11. Eppig J. Oocyte control of ovarian follicular development and function in mammals. Reprod 2001; 122: 829-38 https://doi.org/10.1530/rep.0.1220829
  12. Lequarre A, Traverso J, Marchandise J, Donnay I. Poly(A) RNA is reduced by half during bovine oocyte maturation but increases when meiotic arrest is maintained with CDK inhibitors. Biol Reprod 2004; 71: 425-31 https://doi.org/10.1095/biolreprod.103.026724
  13. Bettegowda A, Patel OV, Ireland JJ, Smith GW. Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, $\beta$-glucuronidase, glyceraldehyde 3-phosphatedehydrogenase, $\beta$-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol Reprod Dev 2006; 73: 267-78 https://doi.org/10.1002/mrd.20333
  14. Lequarre AS, Traverso JM, Marchandise J, Donnay I. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci USA 2005; 102: 367-72 https://doi.org/10.1073/pnas.0408378102
  15. Piccioni F, Zappavigna V, Verrotti AC. Translational regulation during oogenesis and early development: The cap-poly(A) tail relationship. C R Biol 2005; 328: 863-81 https://doi.org/10.1016/j.crvi.2005.05.006
  16. Oh B, Hwang S, McLaughlin J, Solter D, Knowles BB. Timely translation during the mouse oocyte-to-embryo transition. Development 2000; 127: 3795-803
  17. Hwang SJ, Park CE, Hwang KC, Lee KA. Identification of a novel gene by EST clustering and its expression in mouse ovary and testis. Korean J Fertil Steril 2006; 33: 253-63
  18. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reprod 2006; 131: 289-98 https://doi.org/10.1530/rep.1.00835
  19. Yoshida M, Mizoguchi Y, Ishigaki K, Kojima T, Nagai T. Birth of piglets derived from in vitro fertilization of pig oocytes matured in vitro. Theriogenol 1993; 39: 1303-11 https://doi.org/10.1016/0093-691X(93)90232-T
  20. Krisher RL, Brad JR, Herrick ML, Sparman JE, Swain. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci 2007; 98: 72-96 https://doi.org/10.1016/j.anireprosci.2006.10.006
  21. Singh B, Meng L, Rutledge JM, Armstrong DT. Effects of epidermal growth factor and follicle stimulating hormone during in vitro maturation on cytoplasmic maturation of porcine oocytes. Mol Reprod Dev 1997; 46: 401-7 https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<401::AID-MRD20>3.0.CO;2-#
  22. Tubman L, Peter A, Krisher R. Pentose phosphate pathway activity controls nuclear maturation of porcine oocytes. Reprod Fertil 2006; 18: 279-80