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In this paper, we particularly deal with no Fp-rational 
two-torsion elliptic curves, where Fp is the prime field of 
the characteristic p. First we introduce a shift product-
based polynomial transform. Then, we show that the 
parities of (#E − 1)/2 and (#E΄− 1)/2 are reciprocal to each 
other, where #E and #E΄ are the orders of the two 
candidate curves obtained at the last step of complex 
multiplication (CM)-based algorithm. Based on this 
property, we propose a method to check the parity by 
using the shift product-based polynomial transform. For a 
160 bits prime number as the characteristic, the proposed 
method carries out the parity check 25 or more times 
faster than the conventional checking method when 4 
divides the characteristic minus 1. Finally, this paper 
shows that the proposed method can make CM-based 
algorithm that looks up a table of precomputed class 
polynomials more than 10 percent faster. 
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I. Introduction 

In recent years, elliptic curve cryptography (ECC) has 
received much attention. For ECC, some attacks have been 
proposed [2], [3]. From the viewpoints of security and 
efficiency of ECC, it is said that a prime order elliptic curve is 
suitable for ECC. It should be noted that the prime order must 
not be the characteristic of the definition prime field itself. In 
this case, the elliptic curve is especially called an anomalous 
curve and is not suitable for cryptographic use [2]. If the elliptic 
curve E(Fq) is a prime order curve, every rational point on the 
curve except for the infinity point is a generator in E(Fq). It is 
helpful for the implementation of ECC. For security reasons, 
the order must have a prime factor larger than 160 bits for 
which it is best that the order itself is a large and secure prime 
number. As compared to generating prime numbers, generating 
prime order elliptic curves takes a lot of computation time. 
Therefore, a fast algorithm is needed. In order to systematically 
generate prime order elliptic curves, several algorithms have 
been proposed. We can roughly classify them into two types; 
one adopts a certain order counting algorithm [4], [5] and the 
other adopts the complex multiplication (CM) method [6], [7]. 
This paper is related to the CM method, and particularly deals 
with no Fp–rational two-torsion elliptic curves defined over the 
prime field Fp, where p is the characteristic. 

Using a CM-based algorithm, we can generate an elliptic 
curve whose order is a certain prime number. There are several 
versions of CM-based algorithms depending on which 
parameters one wants to enforce [8]. For example, first input a 
prime number as the characteristic p, then determine a small 
discriminant D, and then construct a certain prime order. After 
that, construct a class polynomial corresponding to the 
discriminant D and then obtain the j-invariant from the class 
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polynomial. According to the j-invariant, we have two 
candidate elliptic curves at the last step in the CM-based 
algorithm; one of these two curves has the constructed prime 
order. For these two candidate curves, we must check which 
curve has the constructed prime order. In practice, it is checked 
by picking a random rational point on the curve and then 
calculating a scalar multiplication with the rational point. This 
paper proposes a method to check it faster. In CM-based 
algorithms, the class polynomial computation is the most time-
consuming operation [8]. Therefore, most of the conventional 
improvements for CM-based algorithms are given for this class 
polynomial computation; however, recently Atkin and others 
[9] have proposed an algorithm that prepares a table of 
precomputed class polynomials. Using this table, the algorithm 
generates a prime order elliptic curve within several seconds. 
As an application of the proposed method, this paper deals with 
a CM-based prime order curve generation algorithm that looks 
up a table of precomputed class polynomials. Depending on 
the inputs, there are several different CM-based algorithms. It 
should be noted that the CM-based algorithm shown in this 
paper is just one of them and the proposed method can be 
applied for every version. 

In this paper, we introduce shift product-based polynomial 
transform (SPPT). When the degree of the polynomial is 3, 
SPPT is carried out by a square root calculation and a modular 
reduction modulo polynomial over the prime field Fp. 
Especially in cases in which the order of elliptic curve is an odd 
number such as a prime number, the parities of 2/)1(# −E  
and 2/)1'(# −E  are reciprocal to each other, where #E and 
#E΄ are the orders of the two candidate curves obtained at the 
last step in a CM-based algorithm. Based on this property, we 
propose a method to check the parity by using SPPT. This 
parity check method does not need a scalar multiplication for a 
rational point; however, it needs a square root calculation, a 
modular reduction modulo polynomial, and a quadratic power 
residue check instead. Especially when 4 divides the 
characteristic minus 1, the proposed method does not need the 
square root calculation and modular reduction modulo 
polynomial but only needs a quadratic power residue check, 
where this check is carried out by an exponentiation in the 
prime field. From the experimental results, we show that the 
proposed method is superior to the conventional method. For a 
160 bits prime number as the characteristic, the proposed 
method carries out the parity check 25 or more times faster 
than the conventional method when 4 divides the characteristic 
minus 1. Finally, this paper shows that the proposed method 
can make a CM-based algorithm that looks up a table of 
precomputed class polynomials more than 10 percent faster. In 
the experiments, we also applied the Montgomery operation  
with the Montgomery ladder technique [10] for checking 

which curve has the constructed order. Since the Montgomery 
operation does not need the y-coordinate of the rational point, it 
does not need any square root calculations. In this paper, the 
efficiency of the Montgomery operation is also discussed. 

In this paper, we deal with a finite field Fq whose 
characteristic p is an odd prime number larger than 3. The 
prime field is denoted by Fp; X | Y and X /| Y mean that X 
divides Y and does not divide Y, respectively; and X || Y means 
that X divides Y but X2 does not divide Y. Without any 
additional explanation, polynomials in this paper are monic. 
This paper especially focuses on CM-based algorithms for 
generating prime order elliptic curves. This paper is the 
extended version of our previous works [1] and [11]. Our 
previous works only compared the computation times between 
a scalar multiplication and a parity check; therefore, the 
advantage and efficiency of the proposed method were not 
clearly shown. In this paper, using a practical example of a 
CM-based algorithm for generating prime order elliptic curves 
defined over Fp, we clarify the advantage and examine the 
efficiency of the proposed method. 

II. Fundamentals 

In this section, we go over the fundamentals of an elliptic 
curve, quadratic residue/non-residue, and a CM-based 
algorithm for generating prime order elliptic curves. 

1. Defining Equation 

When the characteristic of Fq is not equal to 2 or 3, an elliptic 
curve over Fq is generally defined by 

.,,0),( 23
qFbaybaxxyxE ∈=−++=        (1) 

The solutions (x, y) to (1) and the point at infinity denoted by 
O are called Fq–rational points when the coordinates of x and y 
lie in Fq. On the elliptic curve, Fq–rational points form an 
additive Abelian group. In this paper, we denote this group and 
its order by E(Fq) and #E(Fq), respectively. The following 
parameter t is called the trace of elliptic curve E(x, y) = 0: 

).(#1 qFEqt −+=                 (2) 

2. No Fq–Rational Two-Torsion Curve 

The necessary and sufficient condition for an elliptic curve to 
have no Fq–rational two-torsion points is that E(x,0) given from 
its defining equation is irreducible over Fq. An Fq– rational 
two-torsion point P means that 2P = O, where O plays a role of 
the unity in the Abelian group E(Fq). It is necessary for a prime 
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order elliptic curve to have no Fq-rational two-torsion points, 
and our previous work [5] uses this necessary condition for 
generating prime order curves. In what follows, we consider no 
Fq–rational two-torsion curves. 

3. The Order of Elliptic Curve 

For an arbitrary element qFi ∈ , if E(i, 0) is a quadratic 
residue in Fq, then the following two rational points on the 
curve (1) are given: 

( ),)0,(, iEi ±                 (3) 

where E(i, 0) ≠ 0 because E(x, y) = 0 is a no Fq–rational two-
torsion curve. Therefore, let N be the number of quadratic 
residues in the following set: 

{ },),0,(| qFiiEcc ∈∀=              (4) 

the order #E(Fq) is given by 

#E(Fq) = 2N + 1,                 (5) 

where 1 in the right-hand side of the above equation 
corresponds to the point at infinity O. From (5), N is written as 

.
2

1)(# −
= qFE

N                  (6) 

4. Quadratic Residue/Non-Residue 

For a non-zero element ,qFc ∈  we can check whether c is 
a quadratic residue (QR) or quadratic non-residue (QNR) in Fq 
as 

⎩
⎨
⎧
−

=−

.QNRaiscwhen1
QRaiscwhen12/)1(qc           (7) 

The product of two non-zero QRs and that of two QNRs 
become QRs in Fq. On the other hand, the product of a QR and 
a QNR becomes a QNR in Fq. 

5. CM-Based Algorithm for Prime Order Curves 

We refer to the following algorithm [8] as CM-based prime 
order elliptic curve generation algorithm: 

Input. Characteristic p 
Output. Prime order curve E(x, y) = 0 over Fp 
Step 1. Find a smallest D along with t such that 

.,,,4 22 ZstDDstp ∈+=  
Step 2. Check whether any of the candidate orders 

tpFE q ±+=± 1)(#               (8) 
 

is a prime number. If both are not prime numbers, then find 
another D along with t at step 1. 

Step 3. Construct the class polynomial HD(x). 
Step 4. Find a root pFj ∈ of HD(x), then set 

.)1728/( pFjjk ∈−=              (9) 

Step 5. Check whether the order of 

023),( 23 =−++= ykkxxyxE         (10) 

is #E−(Fp) or #E+(Fp) by preparing a random rational point P 
on (10) and checking whether or not #E+(Fp)P = O. If the order 
is the constructed prime order, output (10); otherwise, output its 
twisted curve. 

 
The calculation of step 3 is too time-consuming; therefore, 

several improvements have been proposed [6]. As compared 
to step 3, step 5 is carried out much faster. Atkin and others [9] 
canceled the time-consuming calculation by preparing a table 
of precomputed class polynomials. By using this table, the 
algorithm generates a prime order elliptic curve within several 
seconds. This paper proposes an improvement for step 5. The 
above CM-based algorithm is just the non-optimized version in 
which the characteristic p is input. We can consider several 
versions depending on the input such as the order #E and the 
discriminant D. Our proposed method can be applied to every 
version. 

III. Main Idea 

In what follows, we consider the prime field Fp as the 
definition field. We first define SPPT [12]. Then, we show a 
relation between SPPT and cubic trinomial E(x, 0). 

1. SPPT 

Let us consider an irreducible polynomial f(x) over Fp of 
degree m written as 

.1,,)(
0

=∈= ∑
=

mpi

m

i

i
i fFfxfxf         (11) 

As shown in Appendix A, if fm–1 = 0 and m/p | , from f(x) we 
can uniquely determine an irreducible polynomial )(

~
xf  that 

satisfies 

,)()(
~ 1

0
∏

−

=

+=−
p

i

p ixfxxf            (12-1) 
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The two irreducible polynomials f(x) and )(
~

xf  are in a 
one-to-one relation (see Appendix A). We define the SPPT as  

).(
~

)(:SPPT xfxf →             (13) 

In what follows, we denote the irreducible polynomial after 
SPPT with ̃  as shown in (13). 

2. SPPT for Defining Equation E(x, y) = 0 

For no Fp– rational two-torsion curve E(x, y) = 0, let us 
consider the following SPPT: 

).0,(~)0,(:SPPT xExE →            (14) 

Noting that E(x, 0) is an irreducible cubic polynomial over Fp 
in this paper, as shown in (12-1), we can uniquely determine a 
cubic irreducible polynomial )0,(~ xE  that satisfies 

.)0,()0,(~ 1

0
∏

−

=

+=−
p

i

p ixExxE          (15) 

By substituting x = 0 into (15), we have 

.)0,()0,0(~ 1

0
∏

−

=

=
p

i
iEE              (16) 

From (16), we have 

.)0,()0,0(~ 1

0

2/)1(2/)1( ∏
−

=

−− =
p

i

pp iEE         (17) 

By using the number N defined in section II.3 and 
substituting (7), we obtain 

.)1()1()0,0(~ 2/)1( NNppE −−=−= −−         (18) 

Note that this paper deals with an odd prime number larger 
than 3 as the characteristic p. Thus we have the following 
property: 

Property 1.  Let )0,0(~E  be the constant term of a cubic 
irreducible polynomial )0,(~ xE  over Fp that satisfies (15), 
and let N be the number of QRs in the set (4). Then, N is an 
odd number if and only if )0,0(~E  is a QR in Fp. 

3. Implementation of SPPT 

From property 1 and (18), if we have the constant term 
)0,0(~E , then we can check the parity of N by testing whether 

or not )0,0(~E  is a QR in Fp. In order to obtain the constant 
term )0,0(~E , we consider how to determine the cubic 
irreducible polynomial )0,(~ xE  over Fp that satisfies (15). In 
other words, we consider how to implement SPPT defined in 
section III.1. 

Let ω and τ be zeros of f(x) and )(
~

xf  introduced in section 
III.1, respectively, then we have τ =ω p−ω from (12-1). 
Therefore, )(

~
xf  is the minimal polynomial of ω p−ω with 

respect to Fp, where we should note that ω and τ belong to 
mpF  but not to Fp. As shown in Appendix B, from f(x) given 

by (11) with m = 3, we obtain the following two candidates 
of )(

~
xf : 

,)(3)(
~

1
3 fDxfxxf ±+=±          (19-1) 

),274()( 2
0

3
1 fffD +−=           (19-2) 

where D(f) is the discriminant of f(x). Since f(x) is irreducible 
over Fp, let three zeros of f(x) be ω, ωp, and 2pω , and its 
discriminant D(f) is given as [13] 

{ } ,)(

)()()()(
2

2
1

222

2

22

c

fD
ppp

pppp

=−=

−−−=

++ωω

ωωωωωω
     (20) 

.)(where
21

p
ppp Fc ∈−= ++ωω  

Therefore, since the discriminant D(f) becomes a QR in Fp, 
we can calculate the square roots of D(f) in Fp by a square root 
computation [8]. Since f(x) and )(

~
xf  satisfy (12), we can 

distinguish them as 

⎪⎩

⎪
⎨
⎧

−
−

=
−−

++

).(
~

divides)(when)(
~

),(
~

divides)(when)(
~

)(
~

xxfxfxf
xxfxfxfxf

p

p

   (21) 

As shown in (21), the test whether f(x) divides )(
~

xxf p −+  
or )(

~
xxf p −− requires a modular reduction modulo 

polynomial over Fp. 

IV. Distinguishing the Two Candidate Curves 

In this section, we consider the CM-based algorithm [8] as 
an application of property 1. We will not describe the CM 
method itself in detail. In what follows, the definition field of 
the elliptic curves is the prime field Fp. 

1. Two Candidate Elliptic Curves 

As stated in section I, several algorithms for generating 
prime order elliptic curves have been proposed [5], [6]. In the 
CM-based algorithm introduced in section II.5, the output is the 
defining equation E(x, y) = 0 whose order is a prime number. In 
what follows, we suppose that the j-invariant is not 0 or 1728. 



ETRI Journal, Volume 28, Number 6, December 2006 Yasuyuki Nogami et al.   749 

Let us consider that X is the constructed order written as 

.1 tpX −+=                 (22) 

Using the CM-based algorithm, we have a pair of the 
characteristic p and j-invariant. In other words, we obtain  

023),( 23 =−++= ykkxxyxE          (23) 

.,),1728/(where pFjkjjk ∈−=  
Let #E(Fp) be the order of the curve defined by (23), then it is 

possible for the order #E(Fp) to be the following two numbers: 

.1)(# tpFE p ±+=±               (24) 

From only the j-invariant, we cannot distinguish whether 
#E(Fp) is #E−(Fp) or #E+(Fp). For this problem, as shown in 
step 5, we randomly pick an Fp–rational point P on the curve 
(23), then test whether or not XP = O by a scalar multiplication. 
If #E(Fp) is not X, then output the twist of E(x, y) = 0 as 

,023),(' 2323 =−++= ykcxkcxyxE       (25) 

where c is a QNR in Fp. In order to solve this problem without 
the scalar multiplication, our proposed method uses the 
following property: 

Property 2. The parity of 2/)1)((# −+ pFE and that of 
2/)1)((# −− pFE  are reciprocal to each other. It should be 

noted that this paper is especially dealing with no Fp– rational 
two-torsion curves; accordingly, the order of the curve is an 
odd number. 

2. Proposed Method 

In order to distinguish whether the order #E(Fp) is #E+(Fp) or 
#E−(Fp), this paper proposes the following step 5  ́ that uses 
SPPT. 

Step 5 .́ For the irreducible cubic polynomial 

,23)0,( 3 kkxxxE ++=             (26) 

calculate )0,(~ xE  that satisfies (15) by using SPPT as 
introduced in section III.3 and then calculate pFT ∈  as 

.)0,0(~ 2/)1( −= pET               (27) 

Let #E(Fp) be the order of E(x, y)=x3 + 3kx +2k − y2 = 0, then 
we have 

⎩
⎨
⎧

−=
=

=
−

=
.1wheneven

,1whenodd
2

1)(#
T
TFE

N
p

      (28) 

Based on this relation, check whether #E(Fp) is #E+(Fp) or 
#E−(Fp) by using property 2. If the order #E(Fp) is the 
constructed prime order, then output E(x, y) = 0; otherwise, 
output the twisted curve 0),(' =yxE . 

Step 5  ́can be applied instead of step 5 in the conventional 
CM-based algorithm. In step 5 ,́ we calculate an irreducible 
cubic polynomial )0,(~ xE  from E(x, 0) by using SPPT as 
introduced in section III.3. 

According to property 1 and property 2, we can check the 
parity of N from )0,0(~E  and therefore we can distinguish 
whether the order #E(Fp) is #E+(Fp) or #E−(Fp), where N is 
written as (6). If the order is not the constructed order, the 
twisted elliptic curve (25) has the constructed order.  

Step 5 in the conventional CM-based algorithm introduced 
in section II.5 needs a scalar multiplication for a rational point 
as introduced in section IV.1. On the other hand, step 5  ́only 
depends on whether or not )0,0(~E  is a QR in Fp. As shown 
in (19) and (21), step 5  ́ needs a square root calculation, a 
modular reduction modulo polynomial for SPPT, and a 
quadratic power residue check (27). In other words, we need to 
distinguish whether )(

~
xf  given by SPPT is )(

~
xf+  

or )(
~

xf− . However, when 4 divides p − 1, we can easily check 
(27), that is whether or not )0,0(~E  is a QR in Fp, by the 
following calculation: 

( ) .108108

)108108()0,0(~

4/)1(23

2/)1(
232/)1(

−

−
−

−−=

⎟
⎠
⎞⎜

⎝
⎛ +−±=

p

p
p

kk

kkE
    (29) 

Therefore, the result of (29) does not depend on the sign ±. 
Consequently, when 4 divides p – 1, the parity of N can be 
easily checked without a square root calculation and modular 
reduction modulo polynomial for SPPT. As compared to a 
scalar multiplication for a rational point, the calculation of the 
right-hand side of (29) can be carried out much faster because 
it only needs an exponentiation in the prime field Fp. 

When 4 divides p – 1, the following step 5  ̋ can be used 
instead of Step 5 in the CM-based algorithm introduced in 
section II.5. 

Step 5 .̋ For the irreducible cubic polynomial 

,23)0,( 3 kkxxxE ++=           (30) 

calculate the following pFT ∈ : 

( ) .108108
4/)1(23 −

−−=
p

kkT         (31) 

Let #E(Fp) be the order of ,023),( 23 =−++= ykkxxyxE then we 
have 
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⎩
⎨
⎧

−=
=

=
−

=
.1wheneven

,1whenodd
2

1)(#
T
TFE

N
p

       (32) 

 
Based on this relation, check whether #E(Fp) is E+(Fp) or 
#E−(Fp) by using property 2. If the order #E(Fp) is the 
constructed prime order, then output E(x, y) = 0; otherwise, 
output the twisted curve E΄(x, y) = 0. 

Step 5  ̋needs an exponentiation (31) only. We should note that 
(31) does not need any square root calculations. Half of the odd 
prime numbers satisfy the condition that 4 divides p − 1. That is 
to say that we can apply step 5  ̋to half of the prime numbers. 

3. Cost Evaluation 

The conventional method, that is step 5, needs not only to 
calculate a scalar multiplication but also to prepare a random 
rational point on the curve. The preparation of a random rational 
point needs a square root calculation. In this section, we consider 
only the calculation cost of the scalar multiplication of step 5, for 
instance. It is noted that we do not take additions and subtractions 
in the definition field into account. 

Let I, M, and S be the calculation cost of an inversion, a 
multiplication, and a square in the definition field Fp, 
respectively. Let ω be the number of non-zero coefficients of 
non-adjacent form (NAF) representation of the scalar [14]. 
Using affine coordinates [10], the calculation cost C5 of a scalar 
multiplication is given by 

C5 ≈ (I+2M+2S)log2p+(I+2M+S)ω.      (33) 

We can also apply the generalized Montgomery operation 
[15] with the Montgomery ladder technique [10], [16] instead 
of this scalar multiplication (see Appendix F). 

On the other hand, step 5  ́ needs squares of degree 2 
polynomial, multiplications between two polynomials of degree 
2, and modulo operations for degree 3 or 4 polynomial by f(x) as 
the modular polynomial over Fp. The number of polynomial 
squares is about log2 p times, and let the number of polynomial 
multiplications be ω .́ By using Karatsuba method [17], a square 
of polynomial of degree 2 needs 6 squares and a multiplication 
between two polynomials of degree 2 needs 6 multiplications in 
the definition field Fp. Since a modular reduction modulo 
polynomial needs 0 or 1 or 2 multiplications in Fp (see Appendix 
D), let us consider that 2 multiplications in Fp are constantly 
needed. Then we calculate an exponentiation (27). Consequently, 
the calculation cost C5́  of step 5  ́becomes  

C5  ́≈ (6S+2M)log2p+(6M+2M)ω΄+Slog2p+Mω  ̋     (34) 

where ω  ̋is the Hamming weight of the binary representation 
of the exponent (p – 1)/2 shown in (27). 

Step 5  ̋ needs an exponentiation (31). Therefore, the 
calculation cost C5  ̋of step 5  ̋is given by 

C5  ̋≈ Slog2p+Mω΄΄  ́              (35) 

where ω΄  ̋is the Hamming weight of the binary representation 
of the exponent (p – 1)/4 shown in (31). 

We used Pentium 4 (3.8 GHz) and NTL (A Library for doing 
Number Theory)  [18] in the following experiments. NTL has 
the following properties: 

S ≈ 0.8M,  I ≈ 10M.             (36)  

Therefore, the calculation costs become 

C5 ≈ (13.6 log2 p+12.8ω)M ,          (37-1) 

C5  ́≈ (7.6 log2 p+8ω΄+ω˝)M            (37-2) 

C5  ̋≈ (0.8 log2 p+ω΄˝)M              (37-3) 

When log2p=160, ω=30,ω΄=9, ω˝=9, and ω΄˝=9, for example, 
these costs become 

C5 ≈ 2560M, C5  ́≈ 1297M, C5  ̋≈ 137M.        (38) 

In the following experiments, ω is about 30 as shown in 
Table 2 and Table 3, in addition we adopted prime numbers in 
the form 2i + j, j < 218 as the characteristic p, therefore we 
consider that ω ,́ ω ,̋ and ω΄  ̋are about 9. We can estimate that 
step 5  ́and step 5  ̋are about twice and 19 times faster than step 
5, respectively. It is noted that C5 and C5  ́do not contain the 
calculation cost of square root calculations. 

V. Experimental Result 

This section first introduces a CM-based prime order curve 
generation algorithm in which the conventional step 5, the 
proposed step 5 ,́ or step 5  ̋ is applied. Using this algorithm, 
some experimental results for generating 100 prime order 
curves of 160, 180, or 200 bits are shown. Based on the results, 
we compare step 5, step 5 ,́ and step 5  ̋and then we discuss the 
efficiency of the proposed parity check method. 

1. CM-Based Algorithm 

Referring to Savas and others [7], we prepared a table of class 
polynomials by using the software library developed by 
Konstantinou and others [19] for the following discriminants D: 

 

}.499,491,483,467,451,443,435,427
,419,411,403,395,379,371,355,347,339,331
,323,307,299,291,283,267,259,251,235,227

,219,211,203,951,187,179,163,155,139,131
,123,115,107,91,83,67,59,51,43,35,19,11{=D

 

(39)
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In addition, as shown in Table 1, we prepared start prime 
numbers as the characteristic p. 

As shown in (39), we restricted the discriminant D to be less 
than or equal to 499 and also to satisfy D ≡ 3 (mod 8). The 
former is because the degree of HD(x) becomes larger as the 
discriminant D becomes larger. For the latter we refer to 
Morain and others [20]. In the following algorithm, the 
maximum of the discriminant D is particularly related to step 0, 
step 1b, and step 4. After several experiments, we decided to 
limit the discriminant to a maximum of 499. 
 

Table 1. Start prime numbers. 

Size of the start prime (bits) 
 

160 180 200 

4 /| (p-1) 2
160

+7 2
180

+15 2
200

+235 

4 | (p-1) 2
160

+357 2
180

+193 2
200

+697 

 

 
We considered the following CM-based algorithm for 

generating prime order elliptic curves: 

Input. A start prime number of 160, 180, or 200 bits 
Output. Prime order elliptic curves 
Preparation. Consider the discriminant D shown in (39), 

and prepare the following: 
• A table of class polynomials HD(x). 
• For each D, a table of QRs modD. 

Step 0. Search the prime number p next to the previous (or 
the start) prime number as the characteristic of Fp and initialize 
the discriminant D = 11. 

Step 1a. Check the following conditions: 
• 3 /| (D-1) when 3 | (p – 1). 
• p is a QR modD. 

If these two conditions are satisfied, then go to the next step; 
otherwise, go to step 6. 

Step 1b. Using Cornacchia’s algorithm, find a pair of t and s 
such that 4p = t2 + Ds2, Zst ∈, . If the pair of t and s is 
obtained, then go to the next step; otherwise, go to step 6. 

Step 2. Check whether any of the orders 

tpFE p ±+=± 1)(#              (40) 

is a prime number. If both are not prime numbers, then go to 
step 6. Otherwise, go to the next step. 

Step 3. Corresponding to the discriminant D, find the class 
polynomial HD(x) from the table.  

Step 4. Find a root pFj ∈ of HD(x), then set 

.)1728/( pFjjk ∈−=             (41) 

If k cannot be determined, go to step 6; otherwise, go to the 
next step. 

Step 5, 5 ,́ or 5 .̋ Check whether the order of 

023),( 23 =−++= ykkxxyxE          (42) 

is #E−(Fp) or #E+(Fp). Then, corresponding to the result, output 
E(x, y) = 0 or the twisted curve E΄(x, y) = 0. Then, return to step 0. 

Step 6. If D < 499, set the next D and then go to step 1a. 
Otherwise, return to step 0. 

� 
At step 0 in this algorithm, the Miller witness algorithm 

included in the NTL is used for searching for prime numbers, 
where the number of trials is 5. In this case, the error rate of the 
primality check becomes about 2−5; however, since most of the 
prime number candidates are rejected through the following 
steps, we do not check so strictly at step 0. At step 1a, we check 
the two conditions. The first check is easy and the second 
check can be done by looking up the table of precomputed 
QRs mod D. These conditions are given for 4p = t2 + Ds2 to be 
solvable at Step 1b. To be more detailed, the second condition 
and D ≡ 3 mod 4 guarantee that –D is a QR mod p (see 
Appendix C). For step 1b, the Cornacchia’s algorithm is 
applied [10]. For the primality check at step 2, the Miller 
witness algorithm included in the NTL is used, where the 
number of trials is 20. In this case, the error rate of the primality 
check becomes about 2–20, which is low enough. At step 3, this 
paper uses the Hilbert polynomial but not the Weber 
polynomial [8]. At step 4, we calculate 

)),(,gcd()( xHxxxF D
p −=           (43-1) 

then we calculate the following greatest common divisor G(x) 
by changing the parameter s from 0 to 10 until the degree of 
G(x) becomes 1: 
when 4 /|  (p – 1) 

,)),(,1)gcd(()( 2/)1(
p

p FsxFsxxG ∈±+= −      (43-2) 

when 4 | (p – 1)   

.)),(,1)gcd(()( 4/)1(
p

p FsxFsxxG ∈±+= −     (43-3) 

If the degree of G(x) is equal to 1, a zero of HD(x) in Fp can 
be easily given as the zero of G(x); however, if we cannot find 
any zeros of HD(x) in Fp by (43), then go to step 6. The reason 
we consider the parameter s up to 10 is described in 
sectionV.2.A. At step 5, we check whether the obtained curve 
has the constructed prime order or not. As previously described, 
the conventional step 5 calculates a scalar multiplication of a 
rational point on the curve. As fast scalar multiplication 
algorithms, the binary method, NAF representation method, 



752   Yasuyuki Nogami et al. ETRI Journal, Volume 28, Number 6, December 2006 

and window method are well known [10]. For a scalar 
multiplication at step 5, we used the NAF representation 
method. In general, the NAF representation method is faster 
than the binary method and the window method is even faster 
than the NAF representation method; however, the window 
method is not so efficient when the elliptic curve and its order 
vary every time (see Appendix E). For easy understanding 
and comparison, we adopted the NAF representation method. 
The window method can be applied not only for step 5 but also 
step 5 ,́ step 5 .̋ When 4 /| (p–1), we compared the conventional 
step 5 and the proposed step 5 .́ When )1(|4 −p , we 
compared the conventional step 5 and the proposed step 5 .̋ 
After that, in order to be sure, we strictly checked the primality 
of p by the Miller witness algorithm of which the number of 
trials was 15 because at step 0 we did not check the primality 
so strictly. 

2. Experimental Results 

Tables 2 and 3 show the experimental result of generating 
100 prime order elliptic curves defined over prime fields by the 
CM-based algorithm shown in sectionV.1 when 4 /| (p–1) and 

)1(|4 −p , respectively. We used Pentium 4 (3.8 GHz), C 
language with NTL. 

A. Explanation of Tables 2 and 3 

For example, when the size of the characteristic p was equal 
to 160, 59515 integers were input to step 0. Through step 0, 
1082 prime numbers were obtained. By using these prime 
numbers and changing the discriminant D, 51309 pairs of the 
characteristic p and the discriminant D were input to step 1a. 
Then, 14027 pairs of p and D were input to step 1b. In other 
words, 14027 pairs of p and D satisfied the two conditions at 
step 1a. Then, 2627 pairs of integers p+1±t were input to step 2. 
In other words, the equation 4p = t2 +Ds2 was solved with 
respect to t and s by Cornacchia’s algorithm for 2627 pairs of p 
and D. Then, 103 prime orders and pairs of p and D were input 
to step 3 though step 3 only uses the discriminant D. In other 
words, among 2627 pairs of integers tp ±+1 , 103 integers 
lead to prime numbers. At step 3, the average of the 
discriminant D was 225.91 and that of the degree of HD(x) was 
2.29. Then, 100 roots were each obtained from 100 among 103 
HD(x)’s at step 4; accordingly, 200 prime order elliptic curve 
candidates were obtained. In other words, among 103 HD(x)’s, 
3 HD(x)’s could not be solved over Fp by changing the 
parameter s from 0 up to 10. At step 4, there were 39 HD(x)’s of 
degree 1 and the average of the shift s by which a root of HD(x) 
was found was 1.68. From such experimental results, we set  
the maximum of the parameter s∈Fp to 10. Finally, by step 5 

or step 5 ,́ 100 prime order elliptic curves were determined 
from 200 candidates. For scalar multiplications at step 5, we 
used NAF representation. The average of the number of non-
zero coefficients of the NAF representations was 27.75. For 
generating 100 prime order curves, it took 9.67 seconds with 
step 5 or 9.34 seconds with step 5 ,́ where the difference comes 
only from the difference between step 5 and step 5 .́ 

B. Comparison between Step 5, Step 5 ,́ and Step 5  ̋

From the experimental results shown in Tables 2 and 3, we 
find that  

• step 5  ́is about twice as fast as step 5;  
• step 5  ̋is 25 or more times faster than step 5. 
It can be roughly understood that these results come from the 

calculation costs (37); however, the latter result is not so close 
to the estimation. From Tables 2 and 3, we find that the 
calculation times of step 1b and step 5 when )1(|4 −p  are 
slower than those when 4 /| (p – 1), respectively. For example, 
when the size of the characteristic p is equal to 160, the 
computation time at step 5 takes 6.51×10−3 and 31058.8 −×  
seconds on average when 4 /| (p – 1) and 4 | (p – 1), 
respectively. This is due to square root calculations in Fp at step 
1b and step 5. It is known that a square root calculation when    
4 |(p – 1) becomes a little more complicated than that when 
4 /| (p – 1). For a non-zero QR a ∈Fp when 4 /| (p–1), we can 
easily calculate its square roots as 4/)1( +± pa ; however, when  
4 | (p – 1), we must calculate its square roots by some square 
root calculation algorithm such as the Tonelli-Shanks algorithm 
which is briefly introduced in [21]. The experimental results for 
which the Montgomery operation with the Montgomery ladder 
is applied are shown in Appendix F. It is noted that this paper is 
particularly dealing with no Fp–rational two-torsion elliptic 
curves; therefore, the curves cannot be transformed to 
Montgomery form [10].  

3. Efficiency of the Proposed Method  

For example, when 4 /| (p – 1) and the size of the 
characteristic p is 160 bits, generating 100 prime order elliptic 
curves with step 5 takes 9.67 seconds in total. The breakdown 
of the total computation time is also shown in the table, for 
example, it took 6.51×10–1 seconds for step 5. When we use 
the proposed step 5  ́instead of the conventional step 5, it took 
3.28× 10–1 seconds for step 5΄; accordingly, the total 
computation time became 9.34 seconds. In this case, it can be 
said that step 5  ́ contributes about 3.5% improvement. As 
shown in Table 2, when 4 /|  (p – 1), step 5  ́contributes about 
3% improvement on average for CM-based prime order curve 
generation algorithm that looks up a table of precomputed class 
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Table 2. Computation time for generating 100 prime order curves when 4/| (p - 1). 

Size of p (bits) Step # of inputs Computation time (s) Remarks 

Step 0 59515 3.79 # of prime numbers as p 1082 

Step 1a 51309 3.58 ×10-2 

Step 1b 14027 3.29 

Step 2 2627 8.00 × 10-1 

 

Average of discriminant D 225.91 
Step 3 103 5.23 ×10-2 

Average of deg(HD(x)) 2.29 

# of cases that deg(HD(x)) = 1 39 
Step 4 103 9.39 ×10-1 

Average of shift s 1.68 

Step 5/ Step 5΄ 100 6.51 ×10-1/ 3.28 ×10-1 Average of Hamming weight ω † 27.75 

160 

Total - 9.67 / 9.34 Improvement 3.5% 

Step 0 80331 5.75 # of prime numbers as p 1282 

Step 1a 60924 4.78 ×10-2 

Step 1b 16885 4.70 

Step 2 3135 9.72 ×10-1 

 

Average of discriminant D 187.47 
Step 3 102 3.85 ×10-2 

Average of deg(HD(x)) 2.05 

# of cases that deg(HD(x)) = 1 45 
Step 4 102 8.35 ×10-1 

Average of shift s 1.22 

Step 5/ Step 5΄ 100 7.93 ×10-1 / 3.82 ×10-1 Average of Hamming weight ω † 31.65 

180 

Total - 1.33 × 10 / 1.29 × 10 Improvement 3.0% 

Step 0 86469 7.93 # of prime numbers as p 1254 

Step 1a 59839 4.80 ×10-2 

Step 1b 16677 6.03 

Step 2 3156 1.32 

 

Average of discriminant D 214.84 
Step 3 100 4.94 ×10-2 

Average of deg(HD(x)) 2.08 

# of cases that deg(HD(x)) = 1 42 
Step 4 100 7.12 ×10-1 

Average of shift s 1.11 
Step 5/ Step 5΄ 100 9.92 ×10-1 / 4.99 ×10-1 Average of Hamming weight ω † 34.98 

200 

Total - 1.73 × 10 / 1.68 × 10 Improvement 2.9% 

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
† Hamming weight ω means the number of non-zero coefficients of NAF representation of #E.

polynomials. We must say that the contribution of step 5  ́ is 
quite small. 

On the other hand, when 4 | (p – 1), as in the case when 
4 /| (p – 1), step 0 and step 1b are the major calculations; 
however, the third-largest step is step 5. This is because a 
square root computation in step 5 when 4 | (p – 1) becomes a 
little more time-consuming than that when 4 /| (p – 1). Since 
the proposed step 5˝ is 25 or more times faster than the 
conventional step 5, the proposed step 5  ̋contributes about 7% 
improvement as shown in 3 on average. The improvement is 

not so great; however, the calculation of step 5  ̋is quite simple 
as compared to that of step 5. In addition, step 5  ̋can be applied 
for half of odd prime numbers as the characteristic because half 
of odd prime numbers satisfy 4 | (p – 1). The efficiency of the 
use of (43-3) can be seen in the numbers of inputs at step 4 
shown in Table 2 and Table 3. For example, when the size of 
the characteristic p is equal to 180, these numbers are 102 and 
100, respectively. This means that the greatest common divisor 
calculation (43-2) fails to output G(x) of degree 1 twice; 
however, the detailed greatest common divisor calculation (43-3) 
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Table 3. Computation time for generating 100 prime order curves when 4 | (p - 1). 

Size of p (bits) Step # of inputs Computation time (s) Remarks 
Step 0 56487 3.55 # of prime numbers as p 999 
Step 1a 47252 3.66 × 10

-2
 

Step 1b 12877 4.54 
Step 2 2326 7.69 ×10

-1
 

 

Average of discriminant D 230.44 
Step 3 100 5.30  ×10

-2
 

Average of deg(HD(x)) 2.34 
# of cases that deg(HD(x)) = 1 32 

Step 4 100 5.21 ×10
-1

 
Average of shift s 1.12 

Step 5/ Step 5΄ 100 8.58 ×10
-1

/ 3.16 ×10
-2

 Average of Hamming weight ω † 28.72 

160 

Total - 1.05 × 10 / 9.63 Improvement 8.3% 
Step 0 81510 5.68 # of prime numbers as p 1203 
Step 1a 56985 4.61 ×10

-2
 

Step 1b 15794 6.41 
Step 2 2866 9.48 ×10

-1
 

 

Average of discriminant D 184.12 
Step 3 100 3.68 ×10

-2
 

Average of deg(HD(x)) 2.11 
# of cases that deg(HD(x)) = 1 41 

Step 4 100 5.22 ×10
-1

 
Average of shift s 0.97 

Step 5/ Step 5΄ 100 1.02 / 3.61 ×10
-2

 Average of Hamming weight ω † 31.97 

180 

Total - 1.49 × 10 / 1.39 × 10 Improvement 6.7% 
Step 0 82731 7.60 # of prime numbers as p 1201 
Step 1a 57359 4.56 ×10

-2
 

Step 1b 15680 7.95 
Step 2 2871 1.26 

 

Average of discriminant D 231.72 
Step 3 100 5.12 ×10

-2
 

Average of deg(HD(x)) 2.34 
# of cases that deg(HD(x)) = 1 31 

Step 4 100 8.10 ×10
-1

 
Average of shift s 1.12 

Step 5/ Step 5΄ 100 1.29 / 4.64 ×10
-2

 Average of Hamming weight ω † 34.96 

200 

Total - 1.93 × 10 / 1.80 × 10 Improvement 6.7% 

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
† Hamming weight ω means the number of non-zero coefficients of NAF representation of #E.

Table 4. Average computation time of each step for generating 100 prime order curves when 4 | (p - 1) and the size of the characteristic p is 
160 bits. 

Size of p (bits) Step (A) # of inputs (B) Computation time (s) (B) divided by (A) (s) 

Step 0 56487 3.55 6.28 ×10-5 

Step 1a 47252 3.66 × 10-2 7.62 ×10-7 

Step 1b 12877 4.54 3.53 ×10-4 

Step 2 2326 7.69 ×10-1 3.31 ×10-4 

Step 3 100 5.30 ×10-2 5.30 ×10-4 

Step 4 100 5.21 ×10-1 5.21 ×10-3 

Add 
Replace 
Delete 

Step 5/Step 5˝ 100 8.58 ×10-1 / 3.16 ×10-2 8.58 ×10-3 / 3.16 ×10-4 

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
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Table 5. Computation time for generating 100 curves whose order has a large prime factor more than 160 bits when 4 | (p - 1) and the size of 
the characteristic p is 170 bits. 

Size of p (bits) Step # of inputs Computation time (s) Remarks 

Step 0 21970 1.40 # of prime numbers as p 382 

Step 1a 16285 1.13 × 10-2 

Step 1b 4427 1.74 

Step 2 819 7.1 ×10-1 

 

Average of discriminant D 219.00
Step 3 100 5.05 ×10-2 

Average of deg(HD(x)) 2.45 

# of cases that deg(HD(x)) = 1 27 
Step 4 100 6.48 ×10-1 

Average of shift s 1.16 

Step 5/Step 5˝ 100 8.45 ×10-1 / 3.36 ×10-2 Average of Hamming weight ω† 29.88 

170 

Total - 5.45 / 4.63 Improvement 15.0%

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
† Hamming weight ω means the number of non-zero coefficients of NAF representation of #E.

does not. This efficiency contributes to the calculation time at 
step 4 and the average of shift s in (43-3). 

Let us consider the computation time divided by the number 
of inputs for each step. Table 4 shows the results. From the 
results, we find that a scalar multiplication at step 5 is more time-
consuming than a primality check at step 2, a Cornacchia’s 
algorithm calculation at step 1b, finding a zero of HD(x) in Fp at 
step 4, and so on. From this viewpoint, we can conclude that the 
contribution of the proposed step 5  ̋is considerable. If we can 
efficiently restrict the pairs of characteristic p and discriminant D 
in some way, the inputs for step 0 and step 1b will be decreased, 
accordingly the percentage of the improvement by the proposed 
step 5  ̋ will become greater. For example, Table 5 shows an 
experimental result when the order of elliptic curve is restricted 
so as to have a large prime factor more than 160 bits but not so as 
to be a prime number, where the start prime number is 2170 +49. 
The inputs for step 0 and step 1b were decreased; accordingly, 
the improvement became 15.0%. 

VI. Conclusion 

In this paper, we have particularly dealt with no Fp–rational 
two-torsion elliptic curves, first we have defined a shift product-
based polynomial transform (SPPT) that was carried out by a 
square root computation and a modular reduction modulo 
polynomial. Then, it was shown that the parities of (#E –1)/2 and 
(#E  ́–1)/2 are reciprocal to each other, where #E and #E  ́were 
the orders of the two candidate curves obtained at the last step in a 
CM-based algorithm. Based on this property, we proposed a 
method to check the parity by using SPPT. This parity check 
method does not need a scalar multiplication for a rational point; it 

needs a square root calculation, a modular reduction modulo 
polynomial, and a quadratic power residue check instead. 
Especially when 4 divides the characteristic minus 1, the 
proposed method does not need the square root calculation or a 
modular reduction modulo polynomial. It only needs an 
exponentiation. For a 160 bit prime number as the 
characteristic, the proposed method could carry out the parity 
check 25 or more times faster than the conventional method 
when 4 divides the characteristic minus 1. Finally, this paper 
showed that the proposed method could make a CM-based 
algorithm that looks up a table of precomputed class 
polynomials several percent faster. 

Appendix A. Relation between f (x) and f̃  (x) 

In what follows, it is important that the characteristic p 
does not divide the extension degree m. This paper is dealing 
with the case that p is an odd prime number larger than 3 and m 
is equal to 3; therefore, this condition is always satisfied. 

Let us consider an irreducible polynomial f(x) of degree m 
over Fp whose zero ω satisfies Tr(ω) = 0 and ω∈ mpF . Then, 
we have 
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Let )(
~

xf  be∏ −−−
= ))((1

0
ippm

i x ωω , in what follows we 
show that )(

~
xf is an irreducible polynomial of degree m over 

Fp. Suppose that τ = ωp − ω belongs to a proper subfield   
rpF , mr |  of mpF , then we have 
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Since ω does not belongs to the proper subfield, rpF , 
ωω −rp  is not equal to 0. On the other hand, 

1−+++ rpp τττ  is the sum of all conjugates of τ with 
respect to Fp; therefore, the sum becomes an element in Fp. Let 
c∈Fp be the element, we have 
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    (A3) 

then we have 

,0)1'( =−=+ ωω
mpcm            (A4) 

where 1/' −= rmm . As described at the beginning of this 
section, this paper deals with the case that the characteristic p 
does not divide the extension degree m; therefore, c must be 0 
because )1'( +m/p | . Consequently, τ does not belong to the 
proper subfield rpF ; therefore, )(

~
xf  is an irreducible 

polynomial of degree m over Fp whose zero τ = ωp − ω satisfies 

,0
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)Tr( 1
12

=−==++++=− −

−

m
pppp f

mm
τττττωω  (A5) 

.)Tr(where
12 −

++++=
mppp xxxxx  

Therefore, we can make an irreducible polynomial )(
~

xf  
of degree m over Fp satisfying (12) from an irreducible 
polynomial f(x). 

Next, let us determine an irreducible polynomial f(x) of degree 
m over Fp whose zero γ satisfies Tr(γ) = 0 from )(

~
xf . Let τ and 

γ be zeros of )(
~

xf  and )(
~

xxf p − , respectively, then we have 

,γγτ −= p                 (A6-1)  

,
2 ppp γγτ −=               (A6-2) 

,
232 ppp γγτ −=              (A6-3) 

 

.
11 −−

−=
mmm ppp γγτ           (A6-4) 

It is noted that )(
~

xf  satisfying (12) is irreducible over Fp. 
By adding these equations, we have 

12 −
++++=−

mm pppp ττττγγ          (A7) 

.0
~

)Tr( 1 =−== −mfτ               (A8) 

Noting that τ belongs to mpF  but not to its proper subfield, 
we find that γ also belongs to mpF  but not to its proper 
subfield because γ satisfies (A6-1). In addition, we find that γ, γ 
+1, γ +2, ,  γ + (p−1) are also zeros of )(

~
xxf p − . In the 

case that the characteristic p does not divide the extension 
degree m, there exists an element that satisfies Tr(x) = 0 among 
these zeros [22]. Supposing that ω = γ + a satisfies Tr(ω) = 0 
with a certain element a ∈  Fp and denoting the minimal 
polynomial of ω by f(x), we have f(x) that satisfies (12) and fm−1 
= 0, where fm−1 is the coefficient of xm−1 of f(x). Therefore, we 
can make an irreducible polynomial f(x) of degree m over Fp 
satisfying (12) from an irreducible polynomial ).(

~
xf  

Consequently, we have SPPT and it is shown that f(x) and 
)(

~
xf  hold the one to one relation. 

Appendix B. Proof of (19) 

Based on the relation τ = ωp−ω, we have the following 
equations: 

,0)(
~ 2

2 =++−= ppf τττ                (A9-1) 

,3
~

11
22 ff pppp =++= ττττττ            (A9-2) 

,
~ 2

0 BAf pp −=−= τττ                   (A9-3) 

where 

,222 22 ωωωωωω ppppA ++=          (A9-4) 

.22 222 ωωωωωω ppppB ++=          (A9-5) 

Since A+B=3f0 and AB=f13+9f02, we obtain 

,)(or)(
~

0 fDfDBAf −=−=      (A10-1) 

where ).274()( 2
0

3
1 fffD +−=                  (A10-2) 

As shown above, we can easily obtain two candidates of 0 
without any calculations in the extension field 3pF to which 
ω belongs. 

Appendix C. –D is a QR mod p 

Let D ≡ 3 mod 4, p be a QR mod D, and D be factorized as a 
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product of r prime numbers: 

 ,321 rddddD =               (A11) 

.numberprimeoddanis1,where ridi ≤≤  
Since p is a QR mod D, p is also a QR mod di. Using 

Legendre symbol (x/p) = x(p−1)/2 mod p, whether −D is a QR 
mod p or not, that is (−D/p), is given by 
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According to the quadratic reciprocity law [13], we have 
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Therefore, using (p/di) = 1, we have 
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Since D ≡ 3 mod 4, the number of di’s such that di ≡ 3 mod 4 
is odd. Thus, we have (−D/p) = (−1/p)2 = 1. 

Appendix D. Modular Reduction Modulo E(x, 0) 

Consider the product p(x) of two polynomials whose degree 
is less than or equal to 2. The degree of p(x) is less than or equal 
to 4. Let p(x) be given as 
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the modular reduction modulo E(x,0)=x3+3kx+2k is calculated 
as follows: 
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Therefore, we need two multiplications kp4 and kp3, where 3kp4, 
for example, is calculated by 

  3kp4 = kp4 + kp4 + kp4.            (A17) 

In the same way, when the degree of p(x) is 3, we need one 
multiplication. If the degree of p(x) is less than or equal to 2, we 
do not need any multiplications. 

Appendix E. Window Method 

As shown in Table 5, step 5 in which the NAF representation 
method was used took 8.45×10–1 seconds. Under the same 
condition, by using the window method with the following 
window width instead of the NAF representation method, the 
computation time at step 5 became 

        ω  = 2 : 8.43 × 10−1 seconds 
    ω  = 3 : 8.48 × 10−1 seconds             (A18) 

        ω  = 4 : 8.50 × 10−1 seconds 

where ω was the window size. As a result, step 5 with the 
window method became a little faster than that with the NAF 
representation method; however, the efficiency was quite low. 

Appendix F. Montgomery Operation for Step 5 

Using the generalized Montgomery operation with the 
Montgomery ladder technique [10], [16], we can calculate only 
the x-coordinate of nP using that of P, where P is a rational 
point and projective coordinates are used in general. Therefore, 
we can apply the Montgomery operation with the Montgomery 
ladder technique for our purpose. It does not need any square 
root calculations because the y-coordinate of a rational point is 
not needed. In addition, it does not need any inversions in Fp 
because projective coordinates are used. In the same way of C5 
shown in (33), we can evaluate the calculation cost at step 5 
with the Montgomery operation with the Montgomery ladder 
technique. Let C5M be the calculation cost given as [10] 

            C5M ≈ (14M + 5S) log2 p.         (A19) 

In the same way as in section IV.3, when log2 p = 160,  

            C5M ≈ 18M log2 p = 2880M.       (A20)  

Therefore, we can estimate that step 5  ́and step 5  ̋are about 
2.2 and 21 times faster than step 5 with the Montgomery 
operation, respectively.  

Table A1 and Table A2 show the experimental result in the 
case in which the generalized Montgomery operation with the 
Montgomery ladder technique is applied for step 5. From the 
results, we find that  

• Step 5  ́is about 2.1 times faster than step 5,  
• Step 5  ̋is about 22 times faster than step 5. 

It can be understood that these results come from the 
calculation costs. As compared to section V.2.B, the 
experimental result is very close to the estimation described 
above. This is because the generalized Montgomery operation 
with the Montgomery ladder technique does not need any 
square root calculations. Especially when 4 divides the 
characteristic minus 1, we find that the Montgomery operation  
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Table A1. Computation time for generating 100 prime order curves. 

Size of p (bits) Step # of inputs Computation time [unit:s] Remarks 

4 /| (p-1) 

Step 5 / Step 5΄ 100 6.99 ×10-1 / 3.28 × 10-1  
160 

Total - 9.72 / 9.34 Improvements 4.0% 

Step 5 / Step 5΄ 100 8.20 ×10-1 / 3.82 ×10-1  
180 

Total - 1.36 × 10 / 1.29 × 10 Improvements 5.2% 

Step 5 / Step 5΄ 100 1.04 / 4.99 ×10-1  
200 

Total - 1.78 × 10 / 1.68 × 10 Improvements 5.6% 

4 | (p-1) 

Step 5 / Step 5˝ 100 6.96 ×10-1 / 3.16 ×10-2  
160 

Total - 1.03 × 10 / 9.63 Improvements 6.5% 

Step 5 / Step 5˝ 100 8.13 ×10-1 / 3.61 ×10-2  
180 

Total - 1.47 × 10 / 1.39 × 10 Improvements 5.4% 

Step 5 / Step 5˝ 100 1.04 / 4.64 ×10-2  
200 

Total - 1.91 × 10 / 1.80 × 10 Improvements 5.8% 

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
** For step 5, the generalized Montgomery operation with Montgomery ladder technique is applied [10],[16] . 

Table A2. Computation time for generating 100 curves whose order has a large prime factor more than 160 bits when 4 | (p - 1) and the size 
of the characteristic p is 170 bits. 

Size of p (bits) Step # of inputs Computation time (s) Remarks 

Step 5 / Step 5˝ 100 8.25 ×10-1/ 3.36 ×10-2  
170 

Total - 5.43 / 4.63 Improvements 14.7% 

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
** For step 5, the generalized Montgomery operation with Montgomery ladder technique is applied [10],[16] . 

Table A3. Computation time for generating 100 curves whose order has a large prime factor more than 160 bits when 4 | (p - 1) and the size 
of the characteristic p is 170 bits. 

Size of p (bits) Step # of inputs Computation time (s) Remarks 

Step 0 22900 1.41 # of prime numbers as p 406 

Step 1a 16973 8.38 ×10-3 

Step 1b 4513 1.84 

Step 2 863 7.26 ×10-1 

 

Average of discriminant D 168.20 
Step 3 100 3.27 ×10-2 

Average of deg(HD(x)) 2.12 

# of cases that deg(HD(x)) = 1 42 
Step 4 100 5.18 ×10-1 

Average of shift s 0.97 

Step 5 100 9.98 ×10-1 (6.09 ×10-1 ) †  

170 

Total - 5.59  

 * CPU: Pentium 4, 3.80 GHz, we used NTL [18] and prepared class polynomials by [19]. 
** For step 5, the original and generalized Montgomery operations with Montgomery ladder are applied [10], [16]. 
*** The curves are restricted to Fp– rational two-torsion curves. FindRoots() function in NTL is used at Step 5. 
†The data in the parenthesis shows the calculation time needed for the transformation to Montgomery form. 
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with the Montgomery ladder technique at step 5 works more 
efficiently for our purpose as compared to the NAF 
representation method. The original Montgomery operation is 
applied for elliptic curves in the Montgomery form as  

            Ay2 = x3 + Bx2 + x,  A,B ∈  Fp.      (A21) 

Some of the elliptic curves in the form (1) can be 
transformed into the above Montgomery form [10]. If we have 
the Montgomery form (A21), the calculation cost MC5  at 
step 5 by the original Montgomery operation with the 
Montgomery ladder technique is evaluated as [10] 

MC5 ≈ (6M + 4S) log2 p.          (A22) 

When log2p = 160, MC5 ≈ 9.2Mlog2 p = 1472M. As 
compared to (A20), we can easily find that it will become 
about twice as fast; however, the transformation into the 
Montgomery form needs the following conditions and 
calculations. First, (1) must satisfy the following conditions:  

(a) The cubic polynomial E(x, 0) = x3 + ax + b has at least 
one root α in Fp; accordingly the curve becomes Fp–
rational two-torsion elliptic curve. 

(b) The element 3α2 + a is a QR in Fp. 

Then, put A = 3αs, B = s, where s is a square root of 
(3α2+a)−1, we have the Montgomery form (A21). For the 
former operation (a), when we solve a cubic equation x3 + ax + 
b = 0 over Fp, a few square and cubic root calculations are 
needed. Of course we can apply several greatest common 
divisor polynomial calculations such as (43). For this 
calculation, we applied FindRoots() function in NTL [18] 
that is almost the same as that of (43). For the latter operation 
(b), one square root calculation is needed. In addition, the 
possibility that E(x, 0) = x3 +ax+ b has at least one root α in Fp 
is about 2/3, it is the case that x3 + ax + b is reducible over Fp. 
Moreover, the possibility that the element 3α2 + a is a QR in Fp 
is about 1/2, in general. Therefore, the possibility that we can 
transform the curve into the Montgomery form is about 1/3. 
Consequently, if we use only the original Montgomery 
operation with Montgomery ladder technique, we can easily 
guess that generating a lot of secure prime order curves takes 
much more calculation time as compared to using the 
generalized Montgomery operation with the Montgomery 
ladder technique. According to the former condition (a), we can 
use the original Montgomery operation with the Montgomery 
ladder only for Fp–rational two-torsion elliptic curves. This 
paper is particularly dealing with no Fp–rational two-torsion 
elliptic curves; therefore, it is out of the scope of this paper. 
However, from the viewpoint of the fast generation of secure 
elliptic curves, we also carried out a simulation as shown in 
Table A3. In the simulation, we considered the following 

restrictions: 
•  The 170 bits characteristic p satisfies 4 | (p − 1). 
• The curves are Fp-rational two-torsion curves. 
• The curves can be transformed into Montgomery form and 

the calculation time contains the time needed for the 
transformation. 

 
As shown in Table A3, for the purpose of generating a lot of 

secure order elliptic curves with a CM-based algorithm, we 
cannot say that the original Montgomery operation is so 
efficient because it needs the above introduced transformation 
at step 5. 
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