
In this paper, we propose a new language model, namely, 
a dependency structure language model, for information 
retrieval to compensate for the weaknesses of unigram 
and bigram language models. The dependency structure 
language model is based on the first-order dependency 
model and the dependency parse tree generated by a 
linguistic parser. So, long-distance dependencies can be 
naturally captured by the dependency structure language 
model. We carried out extensive experiments to verify the 
proposed model, where the dependency structure model 
gives a better performance than recently proposed 
language models and the Okapi BM25 method, and the 
dependency structure is more effective than unigram and 
bigram in language modeling for information retrieval. 
 

Keywords: Language model, term dependency, 
information retrieval, dependency structure. 

                                                               
Manuscript received Jan. 31, 2005; revised Apr. 17, 2006. 
The material in this work was in part presented at ACM SIGIR 2003 MF/IR workshop. 
Changki Lee (phone: + 82 42 860 6879, email: leeck@etri.re.kr) and Myung-Gil Jang 

(email: mgjang@etri.re.kr) are with Embedded Software Research Division, ETRI, Daejeon, 
Korea. 

Gary Geunbae Lee (email: gblee@postech.ac.kr) is with the Department of Computer 
Science & Engineering, POSTECH, Pohang, Gyeongbuk, Korea. 

I. Introduction 

Using language models for information retrieval has recently 
been studied extensively [1]-[4]. The basic idea is to compute 
the conditional probability p(q|d), that is, the probability of 
generating a query q given the observation of a document d. 
Several different methods have been applied to compute this 
conditional probability. 

Ponte and Croft [2] used several heuristics to smooth the 
maximum likelihood estimate (MLE) of the document 
language model, and assumed that the query is generated under 
a multivariate Bernoulli model. The BBN method [1] uses a 
two-state hidden Markov model as the basis for generating 
queries, which in effect is to smooth the MLE with linear 
interpolation. In Zhai and Lafferty [4], it has been found that 
the retrieval performance is affected by both the estimation 
accuracy of document language models and the appropriate 
modeling of the query. 

The language models used in most previous works are the 
unigram models (similarly, Ponte and Croft [2] assume that, 
given a particular language model, the query terms occur 
independently). The unigram language model makes a strong 
assumption that each word occurs independently, and 
consequently, the probability of a word sequence becomes the 
product of the probabilities of the individual words. 

There are some explorations of bigram and trigram models 
to improve this unrealistic assumption by considering the local 
context [1], [3]. For a bigram, the probability of a new word 
depends on the previous word, while for a trigram, the 
probability of a new word depends on the probabilities of the 
previous two words. 

However, bigram and trigram models have a limitation in 
handling long-distance dependences (in the speech literature, 
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the term l̀ong-distance dependencies' regularly refers to 
anything beyond the range of a trigram model). In a question 
such as 

“Which book should Peter read?” 
we can recognize a long distance dependency between ‘read’ 
and ‘book’. Recently, there have been language models based 
on syntactic parsing to overcome the limitation of 
bigrams/trigrams in the speech recognition field [5]-[7]. 

Van Rijsbergen explored one way of removing the 
independence assumption using the Chow Expansion theory in 
information retrieval [8]. He constructed a probabilistic model 
incorporating dependences between index terms using a 
maximum spanning tree approach. The extent to which two 
index terms depend on each other is derived from the 
distribution of co-occurrences in the entire collection or in the 
relevant and non-relevant document sets. 

Jianfeng Gao and others proposed a dependence language 
modeling approach to information retrieval [9]. The approach 
extends the basic language modeling approach based on 
unigram by relaxing the independence assumption. They 
generated a term co-occurrence model, where any term pair 
within a term trigram in a sentence has a link. But they did not 
use a linguistic syntactic structure. 

In this paper, which addresses similar concepts, we 
propose a dependency structure language model to 
overcome the limitation of unigram and bigram models in 
information retrieval. The dependency structure language 
model is based on a dependency parse tree generated by 
linguistic parser. So, long-distance dependencies can be 
naturally handled by the linguistic syntactic structure model. 
Our dependency structure language model adopts the first-
order dependency model and dependency parse tree to 
capture long-distance dependencies in information retrieval 
applications. 

The remainder of this paper is organized as follows. In 
section II, we describe the first-order dependency model, while 
in section III, we describe the dependency structure language 
model. In section IV, we present some experiments and their 
results. Section V gives our conclusion and future work. 

II. First-Order Dependency Model 

Consider query q = q1, q2,…, qn and the corresponding 
vector x ={x1,x2,…,xn}, where xi = 1 if qi appears in a document, 
and xi = 0 otherwise. The problem of estimating a density 
becomes the problem of estimating the probability p(x). Since 
there are 2n possible vectors x, we must estimate 2n 
probabilities, which is an enormous task. 

If the components of x are statistically independent, the 
problem is greatly simplified. In this case we can write 
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where pi = p(xi=1) and 1-pi = p(xi=0). 

It is natural to ask whether or not there are any compromise 
positions between being completely accurate, which requires 
estimating 2n probabilities, and being forced to assume 
statistical independence, which reduce the problem to estimate 
only n probabilities. One answer is provided by finding an 
expansion for p(x) and approximating p(x) by a partial sum, for 
example, the Rademacher-Walsh Expansion and the Bahadur-
Lazarsfeld Expansion [10]. Another interesting class of 
approximation to a joint probability distribution p(x) is based 
on the identity 
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Fig. 1. A dependence tree. 
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Suppose the variables are not independent, but we can 

number the variables so that p(xi|xi-1,…,x1) is solely dependent 
on the preceding variable xj(i). For example, suppose that 

p(x5|x4,x3,x2,x1) = p(x5|xj(5)) = p(x5|x2) 

p(x4|x3,x2,x1) = p(x4|xj(4)) = p(x4|x2) 

p(x3|x2,x1) = p(x3|xj(3)) = p(x3|x1) 

p(x2|x1) = p(x2|xj(2)) = p(x2|x1) 

with a corresponding dependence tree as in Fig. 1. It then 
follows from (1) that p(x1,x2,x3,x4,x5) can be written as 
p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x2). 

Chow and Liu suggest the construction of a tree such that the 
mutual information between a variable and the variable 
immediately above it are maximized for a dependence tree, as 
in Fig. 1, which was originally used in the Chow Expansion 
[11]. Given two points on the tree such that the i-th point is 
directly and immediately above the j-th point, a maximum 
spanning tree (MST) may be defined as maximizing the sum: 

338   Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006 



∑
i,j

ji,I )( , 

 
where I(i, j) represents the expected mutual information 
provided by i about j, 

.
qpqp

q,qp
q,qpji,I

ji

ji

i,j
ji )()(

)(
log)()( ∑=  

A dependency relationship [12] is an asymmetric binary 
relationship between a head word (or governor, parent), and 
modifier word (or dependent, daughter). Dependency 
grammars represent sentence structures as a set of dependency 
relationships. Normally, the dependency relationships from a 
tree connect all the words in a sentence. A word in the sentence 
may have several modifiers, but each word may modify at 
most one word. The root of the dependency tree does not 
modify any word. It is also called the head of the sentence. 

 
 

Fig. 2. A dependency structure of a sentence. 
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For example, Fig. 2 is a dependency structure of a sentence. 

The head of the sentence is ‘have’. There are four pairs of 
dependency relationships, depicted by four arcs from the heads 
to the modifiers. 

We use Minipar as a dependency parser, which is a principle-
based English parser [13]. Minipar represents its grammar as a 
network where nodes represent grammatical categories and 
links represent types of dependency relationships. An 
evaluation with the SUSANNE corpus shows that Minipar 
achieves about 88% precision and 80% recall with respect to 
dependency relationships. Minipar is one of the more efficient 
parsers. It parses about 300 words per second on a Pentium II 
300 with 128 MB memory [14], yet it would be difficult to run 
experiments on larger collections even with the fastest of 
parsers because of the speed issue.  

Chow and Liu suggest the construction of an MST using 
mutual information for a dependence tree, which was 
originally used in the Chow Expansion. However, we suggest 
using a dependency parse tree that is generated by a linguistic 
dependency parser instead of the mutual information MST 
because a dependency parse tree intuitively and linguistically 

represents the term dependence relations in the syntactic 
structure, which helps to capture the underlying semantics of a 
document. 

III. Dependency Structure Language Model 

The idea of the language modeling approach to information 
retrieval is to estimate the language model for a document and 
then to compute the likelihood that the query would have been 
generated from the estimated model.  

Given query q and document d, we are interested in 
estimating the conditional probability p(d|q), that is, the 
probability that d fits the observed q. After applying the Bayes' 
formula and dropping a document-independent constant, we 
have p(q|d)p(d). Here, p(d) is a prior belief that d is relevant to 
any query and p(q|d) is the query likelihood given the 
document, which captures how well the document generates 
the particular query q.  

In the simplest case, p(d) is assumed to be uniform, and so 
does not affect document ranking. This assumption has been 
taken in most previous works. In our study, we also assume a 
uniform p(d) in order to focus on the effect of dependency 
structure. With the prior uniformity, the retrieval model reduces 
to the calculation of p(q|d), where language modeling comes in.  

The language models used in most previous works are the 
unigram models, which are the multinomial models that assign 
the probability, 
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Clearly, the retrieval problem is now essentially reduced to 
unigram language model estimation. The unigram language 
model makes a strong assumption that each word occurs 
independently, and consequently, the probability of a word 
sequence becomes the product of the probabilities of the 
individual words. However, the unigram model has some 
limitations to capture the term relations in a document.  

The basic idea of our dependency structure language model 
is to capture the term relations in a linguistically practical way 
and can be described as follows. An interesting approximation 
to a joint probability distribution p(q|d) is based on the identity 

 
p(q|d) = p(q1, q2 ,…, qn|d) 

= p(q1|d) p(q2|q1, d)…p(qn|qn-1,…, q1, d). 
 

We can number the words so that p(qi|qi-1,…,q1,d) is solely 
dependent on some preceding word qj(i) as in the Chow 
Expansion theory. We then obtain the product expansion 

 
p(q|d) = p(q1|d) p(q2|qj(2), d) …p(qn|qj(n), d)     (2) 
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The function j(i) is obtained from the dependency parse tree 
of a query. We assume the query is a sentence or at least a 
fragment of sentence whose Minipar result is reasonable. Thus, 
if the query is simply a bag of words, the Minipar result might 
be harmful for the performance. And it is impossible to use the 
count of a query term to indicate the importance of the term as 
in a keyword search scenario. Furthermore, it is hard to deal 
with the case when a query term occurs more than once in the 
same sentence. For example, assume the query is “how to 
search with the search engine?” Thus, the term ‘search’ 
corresponds to two nodes in the dependence tree. If the term 
‘search’ occurs in a document, it is unclear which node in the 
dependence tree we should associate the term with. In this case, 
we assume the term is associated with the node that occurred 
first.  

By letting xi = 1 if qi appears in document d, and xi = 0 
otherwise, we can write the probability of qi given qj(i) as 
follows: 

p(qi|qj(i), d) = ( ps(qi|qj(i), d)xi pu(qi|qj(i), d)1-xi ) xj(i)

 × ( ps(qi|d)xi pu(qi|d)1-xi ) 1-xj(i),         (3) 

where ps(qi|qj(i), d) = p(xi=1|xj(i)=1, d), pu(qi|qj(i), d) = 
p(xi=0|xj(i)=1, d), ps(qi|d) = p(xi=1|xj(i)=0, d) ≈ p(xi=1|d), and 
pu(qi|d) = p(xi=0|xj(i)=0, d) ≈ p(xi=0|d). In the equation, ps(qi|d) 
is used for ‘seen’ word qi that occurs in document d, and 
pu(qi|d) for ‘unseen’ word qi that does not. Probability ps(qi|qj(i), 
d) is used when qi and qj(i) occur in document d, where they 
occur as a dependency relation. Probability pu(qi|qj(i), d) is used 
when qi and qj(i) occur in document d, but without any 
dependency relation between them. 

By substituting (3) into (2), taking the logarithm, and 
collecting the terms, we obtain the following equation as in the 
Chow Expansion theory. 
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Let c(qi;d) denote the count of word qi in document d, and 
c(qi,qj(i);d) denote the count of occurrence of qi and qj(i) as a 
dependency relation in document d. Then, xi =1 means 
c(qi;d)>0, xj(i) = 1 means c(qj(i);d)>0, and xixj(i) =1 means 
c(qi,qj(i);d)>0. So, we can re-write (4) in c(qi;d) and c(qi,qj(i);d) 
terms as follows: 
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Now, we can see that the retrieval function can actually be 
decomposed into four parts. The first part involves a weight for 
each term, which is common between the query and the 
document (that is, matched terms). The second part involves a 
weight for head (or governor, parent) terms of matched terms. 
The third part involves a weight for the occurrence of matched 
terms and their head terms as a dependency relation. The last part 
only involves a document-dependent constant that is related to 
how much probability mass will be allocated to unseen words 
according to the particular smoothing method used.  

In Zhai and Lafferty [4], three smoothing methods, Jelinek-
Mercer, Dirichlet, and absolute discounting are compared. In 
the comparison, Jelinek-Mercer and Dirichlet clearly have a 
better average precision than absolute discounting. 
Considering these results, we use two smoothing methods, 
Jelinek-Mercer and Dirichlet, for our dependency structure 
language model. 

1. Jelinek-Mercer Smoothing Method 

This method involves a linear interpolation of the maximum 
likelihood model with the fallback model (that is, collection 
model), using a coefficient λ to control the influence of each 
model: 

pλ(qi|d) = (1 − λ) ·pml(qi|d) + λ·p(qi|C). 

 
Using this smoothing method, we define ps(qi|d) and pu(qi|d) 

as follows: 
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where pml (qi|d) = [(c(qi;d))/(∑kc(qk;d))]. 
We also define ps(qi|qj(i), d) and pu(qi|qj(i), d) using the same 

smoothing method as follows: 
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where pml(qi|qj(i),d) = [(c(qi,qj(i);d))/(∑kc(qk,qj(i);d))]. 
By substituting (6) and (7) into (5), we obtain the following 

equation. 
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In (8), we ignore the last part, the document-independent 
constant, in order to focus on the effects of the second, third, and 
fourth parts.  

From (8), we define MSDSLM-J(q,d), a query-document scoring 
function adapted from the dependency structure language model 
using the Jelinek-Mercer smoothing method, as follows: 
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where k is a constant parameter to control the influence of each 
part. Thus if k = 0 gives a unigram language model and k = 1 
gives a fully dependency structured language model, different 
values of k give a mix of the two. In the formula, p(qi|qj(i), C) 
can be zero because of a data sparseness problem. To solve this 
problem, we also apply the same smoothing to p(qi|qj(i), C) as 
follows: 

p(qi|qj(i), C) = (1−λ3) ·pml(qi|qj(i), C) + λ3 ·p(qi|C). 

2. Dirichlet Smoothing Method 

A language model is a multinomial distribution, for which 

the conjugate prior for Bayesian analysis is the Dirichlet 
distribution with parameters 

( μ·p(q1|C), μ·p(q2|C),…, μ·p(qn|C) ). 

Thus, the model is given by 
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Using this smoothing method, we define ps(qi|d) and pu(qi|d) 
as follows: 
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We also define ps(qi|qj(i), d) and pu(qi|qj(i), d) using the same 
smoothing method as follows: 

.
);,(

),(
),(

,
);,(

),();,(
),(

2)(

)(2
)(

2)(

)(2)(
)(

∑

∑

+

⋅
=

+

⋅+
=

k
ijk

iji
ijiu

k
ijk

ijiiji
ijis

μdqqc
Cqqpμ

dqqp

μdqqc
Cqqpμdqqc

dqqp

   

(11)

 

By substituting (10) and (11) into (5), we obtain the 
following equation. 
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From (12), we define MSDSLM-D(q, d), a query-document 
scoring function adapted from the dependency structure 
language model using the Dirichlet smoothing method, as 
follows: 
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where k is a constant parameter to control the influence of each 
part. Thus if k = 0 gives a unigram language model and k = 1 
gives a fully dependency structured language model, different 
values of k give a mix of the two. In the formula, p(qi|qj(i), C) 
can also be zero because of the data sparseness problem, so we 
again apply the same smoothing to p(qi|qj(i), C) as follows: 
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3. Interpolating Dependency Structure Language Model 
with Bigram Language Model 

In the speech recognition field, many researchers have 
developed various grammar-based language models [5]-[7]. 
They have showed that grammar-based language models 
outperform the trigram language model. They also interpolated 
a grammar-based model with trigram model, and the 
interpolated model outperformed the original grammar-based 
model and trigram model. Chelba & Jelinek [6] and Roark [7] 
used the word-level interpolation. Charniak interpolated the 
probabilities of entire sentences [5]. This is a much less 
powerful technique than the word-level interpolation, but he 
still observed a significant gain in performance.  

Considering these previous researches, we interpolate our 
dependency structure language model with a bigram language 
model. We interpolated the probabilities of the entire sentence 
(query q) as Charniak did. We also use a dependency structure 
language model, which is restricted to only bigram dependency 
(that is, assuming the dependency parse tree is linear) as a 

bigram language model. We define the interpolated model 
using the Jelinek-Mercer smoothing method as follows: 

),()1()(

)(

q,dMSαq,dMSα
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−−−−

−−

⋅−+⋅=
 

(14) 

where α is a tunable constant parameter, MSDSLM-J-Minipar is a 
query-document scoring function in (9) using a dependency 
parse tree generated by Minipar, and MSDSLM-J-Bigram is a query-
document scoring function in (9) that is restricted to only bigram 
dependency. 

We also define the interpolated model using the Dirichlet 
smoothing method in the same manner. 

IV. Experiment 

1. Experiment Design 

The goal of our experiment is to answer the following three 
questions:  

Will the dependency structure language model be effective for 
information retrieval? To answer this question, we will compare 
the performance of the dependency structure language model 
with that of the state-of-the-art information retrieval methods, 
including the Okapi BM25 and recently proposed language 
models for information retrieval.  

Will the dependency syntactic structure be more effective than 
a bigram model, which only models the co-occurrence of terms 
in language modeling for information retrieval? To answer this 
question, we will compare the results for the dependency 
structure language model using a dependency parse tree with the 
results for the same model using only bigram dependency (that is, 
assuming the dependency parse tree is linear) and the BBN 
method that models bigram production [1].  

Will the interpolating dependency structure language model 
with bigram language model be effective? To answer this 
question, we will compare the result of the interpolation model 
(that is, DSLM-D-Interpolation and DSLM-JM-Interpolation) 
with the results of the other models.  

We used two different TREC testing collections for evaluation: 
AP88 (Associated Press, 1988) and WSJ90-92 (Wall Street 
Journal from 1990 to 1992). The queries are TREC topics 202-250 
(title field only) on TREC disks 2 and 3. We excluded the TREC 
topic 201 from the experiments because the topic's relevant 
documents are not included in the AP88 test collection. We used 
relatively small test collections (AP88 and WSJ90-92) because of 
the cost for parsing the entire collection. The dependency parse tree 
of the user query is obtained by the dependency parser (Minipar) at 
the search time, and the dependency relation information between 
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the two terms in a document is obtained by the dependency parser 
at the indexing time.  

In our experiment, k, λ1 (or μ1), λ2 (or μ2), λ3 (or μ3), and α 
are determined by performing a parameter tuning. This involves 
running the model with several different values and measuring 
the performance of the model. The best performing value is then 
chosen. 

2. Baseline Methods 

The three baseline methods are the Okapi BM25 [15], Zhai's 
language model [4], and the BBN method [1]. The formula for 
the Okapi BM25 (simplified version: k2=0, k3=∞, c=1) is 
given by 
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where tfi is the term frequency of qi in document d, ni is the 
document frequency for qi, N is the number of documents in the 
collection, dld is the document length, avdl is the average 
document length for all the documents in the collection, qtfi is 
frequency of occurrence of the query term qi within a specific 
query, and k1 and b are determined by performing a parameter 
tuning.  

In Zhai and Lafferty [4], three smoothing methods are 
compared. We use two smoothing methods (Jelinek-Mercer and 
Dirichlet) as our baseline methods. The formula, which uses the 
Jelinek-Mercer smoothing method, is given by 
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where λ is determined by performing a parameter tuning. 
The formula applied Dirichlet smoothing method is given by 
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where n is the number of query terms, |d| is the document length, 
and μ is determined by performing a parameter tuning.  

The BBN group suggested a hidden Markov model (HMM) 
that models bigram production [1]. The formula for the BBN 
method is given by 
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where qi is the current word of the query, qi-1 is the previous 
word, and a0, a1 and a2 are determined by performing a 
parameter tuning. 

3. Experiment Results 

The results on the AP88 test collection are shown in Tables 1 
and 2. Table 3 shows the results of the WSJ90-92 test 
collection. In each table, we include the precision at different 
recall points and the average precision (non-interpolated). 

In Table 1, BM25 stands for Okapi BM25 formula, LM-D 
stands for Zhai's model applied to the Dirichlet smoothing 
method, DSLM-DB stands for a dependency structure language 
model that is restricted to only bigram dependency, DSLM-DM 
stands for a dependency structure language model using 
dependency parse tree generated by Minipar, and DSLM-DI 
stands for the interpolation model of DSLM-DM and DSLM-DB. 

As seen from Table 1, the dependency structure language 
model applied to the Dirichlet smoothing method using the 
dependency parse tree generated by Minipar (DSLM-DM) has a 
significant gain in performance. DSLM-DM achieved about 
5.99% improvement compared to BM25 in the average 
precision (the difference is not statistically significant). DSLM-
DM also achieved about 7.67% improvement compared to 
Zhai's model (LM-D) in the average precision (the difference is 
statistically significant at the 0.05 level). And DSLM-DM 
achieved about 1.74% improvement compared to DSLM-DB 
(again, the difference is not statistically significant). 

One notable fact is that the DSLM-DM performance includes 
the error of Minipar parsing in the given corpus. We hope we can 
achieve much better performance if we can improve the 
dependency parsing accuracy, which is about 85% in the current 
 

Table 1. Results for AP88 collection for Dirichlet smoothing.
(BM25: k1=0.35, b=0.5; LM-D: µ= 8000; DSLM-DB:
k=0.2, µ1=8000, µ2=50, µ3=100000; DSLM-DM: k=0.35,
µ1=10000, µ2=10, µ3= 50000; DSLM-DI: α = 0.6) 

Rec BM25 LM-D DSLM-DB DSLM-DM DSLM-DI

0.0 0.6631 0.6015 0.6163 0.6530 0.6550 

0.1 0.5080 0.4949 0.5001 0.5375 0.5366 

0.2 0.4244 0.4346 0.4386 0.4542 0.4598 

0.3 0.3720 0.3848 0.4113 0.4001 0.4101 

0.4 0.3312 0.3407 0.3679 0.3582 0.3653 

0.5 0.2949 0.3153 0.3210 0.3133 0.3181 

0.6 0.2269 0.2274 0.2536 0.2551 0.2586 

0.7 0.1679 0.1737 0.1977 0.2034 0.2099 

0.8 0.1194 0.1050 0.1201 0.1221 0.1244 

0.9 0.0752 0.0630 0.0727 0.0733 0.0734 

1.0 0.0520 0.0462 0.0496 0.0557 0.0556 

AvgP 0.2754 0.2711 0.2869 0.2919 0.2959 
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Minipar system. In Table 1, DSLM-DI also has the best average 
precision. DSLM-DI achieved about 1.37% improvement 
compared to DSLM-DM. Thus, the table also shows that the 
interpolating dependency structure language model with bigram 
language model is as effective in information retrieval as it is in 
the speech recognition field. 

In Table 2, LM-J stands for Zhai's model with the Jelinek- 
Mercer smoothing method, and BBN-B stands for the BBN 
method that models bigram production. Table 2 also shows that 
 

Table 2. Results for AP88 collection for Jelinek-Mercer smoothing.
(LM-J: λ=0.6; BBN-B: a0=0.32, a1=0.03, a2=0.65; DSLM-
JB: k=0.5, λ1=0.8, λ2=0.85, λ3=0.999; DSLM-JM: k=0.4,
λ1=0.7, λ2=0.05, λ3=0.85; DSLM-JI: α=0.7) 

Rec LM-J BBN-B DSLM-JB DSLM-JM DSLM-JI

0.0  0.6058 0.5937 0.5938  0.6459  0.6426  

0.1  0.4761 0.4919 0.5068  0.5026  0.5145  

0.2  0.4109 0.4437 0.4481  0.4431  0.4575  

0.3  0.3444 0.3590 0.3490  0.3563  0.3643  

0.4  0.2786 0.3122 0.3191  0.3224  0.3326  

0.5  0.2518 0.2788 0.2819  0.2963  0.2885  

0.6  0.1953 0.2068 0.2141  0.2217  0.2254  

0.7  0.1620 0.1764 0.1776  0.1841  0.1863  

0.8  0.1205 0.1316 0.1366  0.1292  0.1354  

0.9  0.0738 0.0811 0.0868  0.0787  0.0856  

1.0  0.0482 0.0540 0.0586  0.0577  0.0622  

AvgP 0.2480 0.2648 0.2683  0.2712  0.2782  

Table 3. Results for WSJ90-92 collection for Dirichlet smoothing.
(LM-D: µ=10000; DSLM-DM: k=0.15, µ1=50000, µ2=10, 
µ3=100000; DSLM-DI: α =0.6) 

Rec LM-D DSLM-DM % change over 
LM-D DSLM-DI

0.0 0.6505 0.6492 -0.20 0.6528 

0.1 0.4601 0.4724 +2.60 0.4755 

0.2 0.3572 0.3765 +5.13 0.3780 

0.3 0.2575 0.2802 +8.10 0.2816 

0.4 0.1764 0.2148 +17.88 0.2322 

0.5 0.1482 0.1850 +19.90 0.2011 

0.6 0.1195 0.1533 +22.05 0.1666 

0.7 0.0674 0.0999 +32.53 0.1078 

0.8 0.0559 0.0762 +26.64 0.0809 

0.9 0.0360 0.0544 +33.82 0.0622 

1.0 0.0226 0.0377 +40.05 0.0405 
AvgP 0.1890  0.2101 +10.04  0.2172  

the dependency structure is more effective than the bigram in 
language modeling for information retrieval.  

DSLM-JM achieved about a 9.35% improvement for Zhai's 
model with the Jelinek-Mercer smoothing method (LM-J) in 
average precision (statistically significant at the 0.05 level). 
DSLM-JM also achieved about 2.42% improvement over 
BBN-B (the difference is statistically significant at the 0.10 
level). DSLM-JM achieved about 1.08% improvement for 
DSLM-JB (the difference is not statistically significant). 
DSLM-JI (the best parameter value is α = 0.7) has the best 
average precision. 

Tables 3 and 4 show the results for the WSJ90-92 test 
collection. As seen from Table 3, DSLM-DM and DSLM-JM 
have significant gains in performance compared to LM-D and 
LM-J, respectively (statistically significant at the 0.10 level). 
DSLM-DI (α= 0.6) and DSLM-JI (α= 0.4) also have the best 
average precisions, respectively. So, in general, we can verify 
that the dependency structure language model is more effective 
than the conventional language modeling for information 
retrieval, and the interpolating dependency structure language 
model with bigram language model is as effective in 
information retrieval as it is in the speech recognition field. 
 

Table 4. Results for WSJ90-92 collection for Jelinek-Mercer 
smoothing. (LM-J: λ=0.8; DSLM-JM: k=0.35, λ1=0.7,
λ2=0.05, λ3=0.95; DSLM-JI: α=0.4). 

Rec  LM-J DSLM-JM % change over 
LM-J  DSLM-JI

0.0  0.5461 0.5619  +2.81  0.5924  

0.1  0.4391 0.4566  +3.83  0.4676  

0.2  0.3717 0.3782  +1.72  0.3897  

0.3  0.2826 0.2991  +5.52  0.3196  

0.4  0.2258 0.2529  +10.72  0.2517  

0.5  0.1782 0.2103  +15.26  0.2211  

0.6  0.1360 0.1586  +14.25  0.1597  

0.7  0.0736 0.0783  +6.00  0.1016  

0.8  0.0563 0.0548  -2.74  0.0723  

0.9  0.0310 0.0287  -8.01  0.0430  

1.0  0.0161 0.0169  +4.73  0.0283  

AvgP 0.1951 0.2094  +6.83  0.2215  

 

 
V. Conclusion 

In the language model for information retrieval, unigram and 
bigram language models have some limitations to capture the 
underlying semantics in a document due to their inability to 
handle long-distance dependencies. In this paper, we propose a 
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dependency structure language model to compensate for the 
weakness of the unigram and bigram language models in 
information retrieval. The dependency structure language model 
is based on the first-order dependency model and the 
dependency parse tree generated by a dependency parser. Thus, 
long-distance dependencies can be naturally handled by the 
dependency structure language model. We carried out some 
experiments to verify the proposed model. The experiments 
were performed on both AP88 and WSJ90-92 test collections. 
Based on the experiment results, we can draw the following 
conclusions:  

1) Based on the comparison between the dependency structure 
language model and traditional language model and the Okapi 
BM25 method, we can conclude that the dependency structure 
language model for information retrieval is an effective retrieval 
method. In our experiments, the dependency structure model 
gives a better performance than both the traditional language 
model (statistically significant at the 0.05 level) and the Okapi 
BM25 method (the p-value is 0.186).  

2) Based on the comparison between the dependency structure 
and bigram dependency in language modeling for information 
retrieval, we can also conclude that the dependency structure is 
more effective than the bigram in language modeling for 
information retrieval (not statistically significant).  

3) Based on the comparison between the interpolation model 
and the dependency structure language model, we can also 
conclude that the interpolating dependency structure language 
model with bigram language model is also effective in 
information retrieval.  

The disadvantage in using the dependency parser is that the 
computational cost of a dependency parse tree becomes high 
because the dependency parse tree of the user query is obtained 
by a dependency parser at the search time, and the co-occurrence 
information between the two terms are obtained by a 
dependency parser at the indexing time (in general, the cost of 
any language parsing is O(n3)). To reduce this computational cost, 
we need to find a way that we do not rely on a full dependency 
parser, but use a more simplistic phrase chunker or partial parser 
in the future. 
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