
In this paper, we propose a new language model, namely,
a dependency structure language model, for information
retrieval to compensate for the weaknesses of unigram
and bigram language models. The dependency structure
language model is based on the first-order dependency
model and the dependency parse tree generated by a
linguistic parser. So, long-distance dependencies can be
naturally captured by the dependency structure language
model. We carried out extensive experiments to verify the
proposed model, where the dependency structure model
gives a better performance than recently proposed
language models and the Okapi BM25 method, and the
dependency structure is more effective than unigram and
bigram in language modeling for information retrieval.

Keywords: Language model, term dependency,
information retrieval, dependency structure.

Manuscript received Jan. 31, 2005; revised Apr. 17, 2006.
The material in this work was in part presented at ACM SIGIR 2003 MF/IR workshop.
Changki Lee (phone: + 82 42 860 6879, email: leeck@etri.re.kr) and Myung-Gil Jang

(email: mgjang@etri.re.kr) are with Embedded Software Research Division, ETRI, Daejeon,
Korea.

Gary Geunbae Lee (email: gblee@postech.ac.kr) is with the Department of Computer
Science & Engineering, POSTECH, Pohang, Gyeongbuk, Korea.

I. Introduction

Using language models for information retrieval has recently
been studied extensively [1]-[4]. The basic idea is to compute
the conditional probability p(q|d), that is, the probability of
generating a query q given the observation of a document d.
Several different methods have been applied to compute this
conditional probability.

Ponte and Croft [2] used several heuristics to smooth the
maximum likelihood estimate (MLE) of the document
language model, and assumed that the query is generated under
a multivariate Bernoulli model. The BBN method [1] uses a
two-state hidden Markov model as the basis for generating
queries, which in effect is to smooth the MLE with linear
interpolation. In Zhai and Lafferty [4], it has been found that
the retrieval performance is affected by both the estimation
accuracy of document language models and the appropriate
modeling of the query.

The language models used in most previous works are the
unigram models (similarly, Ponte and Croft [2] assume that,
given a particular language model, the query terms occur
independently). The unigram language model makes a strong
assumption that each word occurs independently, and
consequently, the probability of a word sequence becomes the
product of the probabilities of the individual words.

There are some explorations of bigram and trigram models
to improve this unrealistic assumption by considering the local
context [1], [3]. For a bigram, the probability of a new word
depends on the previous word, while for a trigram, the
probability of a new word depends on the probabilities of the
previous two words.

However, bigram and trigram models have a limitation in
handling long-distance dependences (in the speech literature,

Dependency Structure Applied to
Language Modeling for Information Retrieval

 Changki Lee, Gary Geunbae Lee, and Myung-Gil Jang

ETRI Journal, Volume 28, Number 3, June 2006 Changki Lee et al. 337

the term l̀ong-distance dependencies' regularly refers to
anything beyond the range of a trigram model). In a question
such as

“Which book should Peter read?”
we can recognize a long distance dependency between ‘read’
and ‘book’. Recently, there have been language models based
on syntactic parsing to overcome the limitation of
bigrams/trigrams in the speech recognition field [5]-[7].

Van Rijsbergen explored one way of removing the
independence assumption using the Chow Expansion theory in
information retrieval [8]. He constructed a probabilistic model
incorporating dependences between index terms using a
maximum spanning tree approach. The extent to which two
index terms depend on each other is derived from the
distribution of co-occurrences in the entire collection or in the
relevant and non-relevant document sets.

Jianfeng Gao and others proposed a dependence language
modeling approach to information retrieval [9]. The approach
extends the basic language modeling approach based on
unigram by relaxing the independence assumption. They
generated a term co-occurrence model, where any term pair
within a term trigram in a sentence has a link. But they did not
use a linguistic syntactic structure.

In this paper, which addresses similar concepts, we
propose a dependency structure language model to
overcome the limitation of unigram and bigram models in
information retrieval. The dependency structure language
model is based on a dependency parse tree generated by
linguistic parser. So, long-distance dependencies can be
naturally handled by the linguistic syntactic structure model.
Our dependency structure language model adopts the first-
order dependency model and dependency parse tree to
capture long-distance dependencies in information retrieval
applications.

The remainder of this paper is organized as follows. In
section II, we describe the first-order dependency model, while
in section III, we describe the dependency structure language
model. In section IV, we present some experiments and their
results. Section V gives our conclusion and future work.

II. First-Order Dependency Model

Consider query q = q1, q2,…, qn and the corresponding
vector x ={x1,x2,…,xn}, where xi = 1 if qi appears in a document,
and xi = 0 otherwise. The problem of estimating a density
becomes the problem of estimating the probability p(x). Since
there are 2n possible vectors x, we must estimate 2n
probabilities, which is an enormous task.

If the components of x are statistically independent, the
problem is greatly simplified. In this case we can write

∏∏
=

−

=

−==
n

i

x
i

x
n

i
i

ii
i

ppxpxp
1

1

1
)(1)()(,

where pi = p(xi=1) and 1-pi = p(xi=0).

It is natural to ask whether or not there are any compromise
positions between being completely accurate, which requires
estimating 2n probabilities, and being forced to assume
statistical independence, which reduce the problem to estimate
only n probabilities. One answer is provided by finding an
expansion for p(x) and approximating p(x) by a partial sum, for
example, the Rademacher-Walsh Expansion and the Bahadur-
Lazarsfeld Expansion [10]. Another interesting class of
approximation to a joint probability distribution p(x) is based
on the identity

.,x,,xxx...pxxpxp
,x,,x,xxpxp

nnn

n

)()()(
)()(

121121

321

−−=

=

(1)

Fig. 1. A dependence tree.

X1

X3X2

X5 X4

Suppose the variables are not independent, but we can

number the variables so that p(xi|xi-1,…,x1) is solely dependent
on the preceding variable xj(i). For example, suppose that

p(x5|x4,x3,x2,x1) = p(x5|xj(5)) = p(x5|x2)

p(x4|x3,x2,x1) = p(x4|xj(4)) = p(x4|x2)

p(x3|x2,x1) = p(x3|xj(3)) = p(x3|x1)

p(x2|x1) = p(x2|xj(2)) = p(x2|x1)

with a corresponding dependence tree as in Fig. 1. It then
follows from (1) that p(x1,x2,x3,x4,x5) can be written as
p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x2).

Chow and Liu suggest the construction of a tree such that the
mutual information between a variable and the variable
immediately above it are maximized for a dependence tree, as
in Fig. 1, which was originally used in the Chow Expansion
[11]. Given two points on the tree such that the i-th point is
directly and immediately above the j-th point, a maximum
spanning tree (MST) may be defined as maximizing the sum:

338 Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006

∑
i,j

ji,I)(,

where I(i, j) represents the expected mutual information
provided by i about j,

.
qpqp

q,qp
q,qpji,I

ji

ji

i,j
ji)()(

)(
log)()(∑=

A dependency relationship [12] is an asymmetric binary
relationship between a head word (or governor, parent), and
modifier word (or dependent, daughter). Dependency
grammars represent sentence structures as a set of dependency
relationships. Normally, the dependency relationships from a
tree connect all the words in a sentence. A word in the sentence
may have several modifiers, but each word may modify at
most one word. The root of the dependency tree does not
modify any word. It is also called the head of the sentence.

Fig. 2. A dependency structure of a sentence.

cmpl

spec

adjn

dogbrown a have I

subj

For example, Fig. 2 is a dependency structure of a sentence.

The head of the sentence is ‘have’. There are four pairs of
dependency relationships, depicted by four arcs from the heads
to the modifiers.

We use Minipar as a dependency parser, which is a principle-
based English parser [13]. Minipar represents its grammar as a
network where nodes represent grammatical categories and
links represent types of dependency relationships. An
evaluation with the SUSANNE corpus shows that Minipar
achieves about 88% precision and 80% recall with respect to
dependency relationships. Minipar is one of the more efficient
parsers. It parses about 300 words per second on a Pentium II
300 with 128 MB memory [14], yet it would be difficult to run
experiments on larger collections even with the fastest of
parsers because of the speed issue.

Chow and Liu suggest the construction of an MST using
mutual information for a dependence tree, which was
originally used in the Chow Expansion. However, we suggest
using a dependency parse tree that is generated by a linguistic
dependency parser instead of the mutual information MST
because a dependency parse tree intuitively and linguistically

represents the term dependence relations in the syntactic
structure, which helps to capture the underlying semantics of a
document.

III. Dependency Structure Language Model

The idea of the language modeling approach to information
retrieval is to estimate the language model for a document and
then to compute the likelihood that the query would have been
generated from the estimated model.

Given query q and document d, we are interested in
estimating the conditional probability p(d|q), that is, the
probability that d fits the observed q. After applying the Bayes'
formula and dropping a document-independent constant, we
have p(q|d)p(d). Here, p(d) is a prior belief that d is relevant to
any query and p(q|d) is the query likelihood given the
document, which captures how well the document generates
the particular query q.

In the simplest case, p(d) is assumed to be uniform, and so
does not affect document ranking. This assumption has been
taken in most previous works. In our study, we also assume a
uniform p(d) in order to focus on the effect of dependency
structure. With the prior uniformity, the retrieval model reduces
to the calculation of p(q|d), where language modeling comes in.

The language models used in most previous works are the
unigram models, which are the multinomial models that assign
the probability,

.∏=
i

i dqpdqp)()(

Clearly, the retrieval problem is now essentially reduced to
unigram language model estimation. The unigram language
model makes a strong assumption that each word occurs
independently, and consequently, the probability of a word
sequence becomes the product of the probabilities of the
individual words. However, the unigram model has some
limitations to capture the term relations in a document.

The basic idea of our dependency structure language model
is to capture the term relations in a linguistically practical way
and can be described as follows. An interesting approximation
to a joint probability distribution p(q|d) is based on the identity

p(q|d) = p(q1, q2 ,…, qn|d)

= p(q1|d) p(q2|q1, d)…p(qn|qn-1,…, q1, d).

We can number the words so that p(qi|qi-1,…,q1,d) is solely
dependent on some preceding word qj(i) as in the Chow
Expansion theory. We then obtain the product expansion

p(q|d) = p(q1|d) p(q2|qj(2), d) …p(qn|qj(n), d) (2)

ETRI Journal, Volume 28, Number 3, June 2006 Changki Lee et al. 339

The function j(i) is obtained from the dependency parse tree
of a query. We assume the query is a sentence or at least a
fragment of sentence whose Minipar result is reasonable. Thus,
if the query is simply a bag of words, the Minipar result might
be harmful for the performance. And it is impossible to use the
count of a query term to indicate the importance of the term as
in a keyword search scenario. Furthermore, it is hard to deal
with the case when a query term occurs more than once in the
same sentence. For example, assume the query is “how to
search with the search engine?” Thus, the term ‘search’
corresponds to two nodes in the dependence tree. If the term
‘search’ occurs in a document, it is unclear which node in the
dependence tree we should associate the term with. In this case,
we assume the term is associated with the node that occurred
first.

By letting xi = 1 if qi appears in document d, and xi = 0
otherwise, we can write the probability of qi given qj(i) as
follows:

p(qi|qj(i), d) = (ps(qi|qj(i), d)xi pu(qi|qj(i), d)1-xi) xj(i)

 × (ps(qi|d)xi pu(qi|d)1-xi) 1-xj(i), (3)

where ps(qi|qj(i), d) = p(xi=1|xj(i)=1, d), pu(qi|qj(i), d) =
p(xi=0|xj(i)=1, d), ps(qi|d) = p(xi=1|xj(i)=0, d) ≈ p(xi=1|d), and
pu(qi|d) = p(xi=0|xj(i)=0, d) ≈ p(xi=0|d). In the equation, ps(qi|d)
is used for ‘seen’ word qi that occurs in document d, and
pu(qi|d) for ‘unseen’ word qi that does not. Probability ps(qi|qj(i),
d) is used when qi and qj(i) occur in document d, where they
occur as a dependency relation. Probability pu(qi|qj(i), d) is used
when qi and qj(i) occur in document d, but without any
dependency relation between them.

By substituting (3) into (2), taking the logarithm, and
collecting the terms, we obtain the following equation as in the
Chow Expansion theory.

)(log
)(
)(

log
)(
)(

log

)(
)(

log
)(
)(

log

))()(log()1(

))()(log(

))()(log(

)(log)(log

)(log

1)(

)(

2
)(

)(

2
)(

1

1

2
)(

1
)()(

2
)(

1
11

2
)(1

11

dqp
dqp
dqp

,dqqp
,dqqp

xx

dqp
,dqqp

x
dqp
dqp

x

dqpdqpx

,dqqp,dqqpx

dqpdqp

,dqqpdqp

dqp

iu

n

iiu

is

ijiu

ijis
n

i
iji

iu

ijiu
n

i
ij

iu

is
n

i
i

x
iu

x
is

n

i
ij

x
ijiu

x
ijis

n

i
ij

x
u

x
s

n

i
iji

ii

ii

∑∑

∑∑

∑

∑

∑

==

==

−

=

−

=

−

=

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+=

−+

+

=

+=

(4)

Let c(qi;d) denote the count of word qi in document d, and
c(qi,qj(i);d) denote the count of occurrence of qi and qj(i) as a
dependency relation in document d. Then, xi =1 means
c(qi;d)>0, xj(i) = 1 means c(qj(i);d)>0, and xixj(i) =1 means
c(qi,qj(i);d)>0. So, we can re-write (4) in c(qi;d) and c(qi,qj(i);d)
terms as follows:

.)(log

)(
)(

log
)(

)(
log

)(

)(
log

)(
)(

log)(log

)(

)(

0);(

)(

0);(0);(

)(

)(

dqp

dqp
dqp

,dqqp

,dqqp

dqp

,dqqp

dqp
dqp

dqp

i
i

u

iu

is

ijiu

ijis

d,qqc

iu

ijiu

dqi:ciu

is

dqi:c

iji

iji

∑

∑

∑∑

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

+=

>

>>

(5)

Now, we can see that the retrieval function can actually be
decomposed into four parts. The first part involves a weight for
each term, which is common between the query and the
document (that is, matched terms). The second part involves a
weight for head (or governor, parent) terms of matched terms.
The third part involves a weight for the occurrence of matched
terms and their head terms as a dependency relation. The last part
only involves a document-dependent constant that is related to
how much probability mass will be allocated to unseen words
according to the particular smoothing method used.

In Zhai and Lafferty [4], three smoothing methods, Jelinek-
Mercer, Dirichlet, and absolute discounting are compared. In
the comparison, Jelinek-Mercer and Dirichlet clearly have a
better average precision than absolute discounting.
Considering these results, we use two smoothing methods,
Jelinek-Mercer and Dirichlet, for our dependency structure
language model.

1. Jelinek-Mercer Smoothing Method

This method involves a linear interpolation of the maximum
likelihood model with the fallback model (that is, collection
model), using a coefficient λ to control the influence of each
model:

pλ(qi|d) = (1 − λ) ·pml(qi|d) + λ·p(qi|C).

Using this smoothing method, we define ps(qi|d) and pu(qi|d)

as follows:

),()(

),()()1()(

1

11

Cqpλdqp

Cqpλdqpλdqp

iiu

iimlis

⋅=

⋅+⋅−=
 (6)

where pml (qi|d) = [(c(qi;d))/(∑kc(qk;d))].
We also define ps(qi|qj(i), d) and pu(qi|qj(i), d) using the same

smoothing method as follows:

340 Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006

),,(),(

),,(),()(1),(

)(2)(

)(2)(2)(

Cqqpλdqqp

Cqqpλdqqpλdqqp

ijiijiu

ijiijimlijis

⋅=

⋅+⋅−=

(7)

where pml(qi|qj(i),d) = [(c(qi,qj(i);d))/(∑kc(qk,qj(i);d))].
By substituting (6) and (7) into (5), we obtain the following

equation.

∑

∑

∑

∑

∑

⋅+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅−

+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅−
++

⋅

⋅
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅−

+=

>

>

>

>

i
i

i

iml

dqqci

iji

ijiml

dqqci

i

iji

dqci

i

iml

dqci

Cqp

Cqp
dqp

Cqqp
dqqp

Cqp

Cqqp

Cqp
dqp

dqp

iji

iji

ij

i

))(log(λ

)(λ
)()λ(1

1log

),(λ
),()λ(1

1log

)(λ

),(λ
log

)(λ
)()λ(1

1log)(log

1

1

1

0);,(:

)(2

)(2

0);,(:

1

)(2

0);(:

1

1

0);(:

)(

)(

)(

(8)

In (8), we ignore the last part, the document-independent
constant, in order to focus on the effects of the second, third, and
fourth parts.

From (8), we define MSDSLM-J(q,d), a query-document scoring
function adapted from the dependency structure language model
using the Jelinek-Mercer smoothing method, as follows:

,
)(λ

)()λ(1
1log

),(λ
),()λ(1

1log

)(λ
),(λ

log

)(λ
)()λ(1

1log),(

1

1

0);,(:

)(2

)(2

0);,(:

1

)(2

0);(:

1

1

0);(:

)(

)(

)(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅−

+⋅−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅−
+⋅+

⋅

⋅
⋅+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅−

+=

∑

∑

∑

∑

>

>

>

>
−

Cqp
dqp

k

Cqqp
dqqp

k

Cqp
Cqqp

k

Cqp
dqp

dqMS

i

iml

dqqci

iji

ijiml

dqqci

i

iji

dqci

i

iml

dqci
JDSLM

iji

iji

ij

i

(9)

where k is a constant parameter to control the influence of each
part. Thus if k = 0 gives a unigram language model and k = 1
gives a fully dependency structured language model, different
values of k give a mix of the two. In the formula, p(qi|qj(i), C)
can be zero because of a data sparseness problem. To solve this
problem, we also apply the same smoothing to p(qi|qj(i), C) as
follows:

p(qi|qj(i), C) = (1−λ3) ·pml(qi|qj(i), C) + λ3 ·p(qi|C).

2. Dirichlet Smoothing Method

A language model is a multinomial distribution, for which

the conjugate prior for Bayesian analysis is the Dirichlet
distribution with parameters

(μ·p(q1|C), μ·p(q2|C),…, μ·p(qn|C)).

Thus, the model is given by

.
);(

)();(
)(

∑ +

⋅+
=

k
k

ii
iμ μdqc

Cqpμdqc
dqp

Using this smoothing method, we define ps(qi|d) and pu(qi|d)
as follows:

.
);(

)(
)(

,
);(

)();(
)(

1

1

1

1

∑

∑

+

⋅
=

+

⋅+
=

k
k

i
iu

k
k

ii
is

μdqc
Cqpμ

dqp

μdqc
Cqpμdqc

dqp

(10)

We also define ps(qi|qj(i), d) and pu(qi|qj(i), d) using the same
smoothing method as follows:

.
);,(

),(
),(

,
);,(

),();,(
),(

2)(

)(2
)(

2)(

)(2)(
)(

∑

∑

+

⋅
=

+

⋅+
=

k
ijk

iji
ijiu

k
ijk

ijiiji
ijis

μdqqc
Cqqpμ

dqqp

μdqqc
Cqqpμdqqc

dqqp

(11)

By substituting (10) and (11) into (5), we obtain the
following equation.

.
);(

)(
log

)(
);(1log

),(
);,(

1log

)(
),(

);q,(

);(
log

)(
);(1log)(log

1

1

10);,(:

)(2

)(

0);,(:

1

)(2

2)(

1

0);(:

10);(:

)(

)(

)(

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

⋅
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
++

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅

⋅
⋅

+

+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+=

∑∑

∑

∑

∑
∑

∑

∑

>

>

>

>

μdqc
Cqpμ

Cqpμ
dqc

Cqqpμ
dqqc

Cqpμ
Cqqpμ

μdqc

μdqc

Cqpμ
dqcdqp

k
k

i

i

i

i

dqqci

iji

iji

dqqci

i

iji

k
ijk

k
k

dqci

i

i

dqci

iji

iji

ij

i

(12)

From (12), we define MSDSLM-D(q, d), a query-document
scoring function adapted from the dependency structure
language model using the Dirichlet smoothing method, as
follows:

ETRI Journal, Volume 28, Number 3, June 2006 Changki Lee et al. 341

,
);(

)(
log

)(
);(

1log

),(
);,(

1log

)(
),(

);,(

);(
log

)(
);(

1log

),(

1

1

10);,(:

)(2

)(

0);,(:

1

)(2

k
2)(

k
1

0);(:

i10);(:

)(

)(

)(

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

⋅
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+⋅−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+⋅+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅

⋅
⋅

+

+
⋅+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+=

∑∑

∑

∑

∑
∑

∑

∑

>

>

>

>

k
k

i

i

i

i

dqqci

iji

iji

dqqci

i

iji

ijk

k

dqci

i

dqci

DSLM_D

μdqc
Cqpμ

Cqpμ
dqc

k

Cqqpμ
dqqc

k

Cqpμ
Cqqpμ

μdqqc

μdqc
k

Cqpμ
dqc

dqMS

iji

iji

ij

i

(13)

where k is a constant parameter to control the influence of each
part. Thus if k = 0 gives a unigram language model and k = 1
gives a fully dependency structured language model, different
values of k give a mix of the two. In the formula, p(qi|qj(i), C)
can also be zero because of the data sparseness problem, so we
again apply the same smoothing to p(qi|qj(i), C) as follows:

.
);,(

)();,(
),(

3)(

3)(

)(∑∑
∑

+

⋅+
=

d
ijk

k

d
iiji

iji μdqqc

Cqpμdqqc
Cqqp

3. Interpolating Dependency Structure Language Model
with Bigram Language Model

In the speech recognition field, many researchers have
developed various grammar-based language models [5]-[7].
They have showed that grammar-based language models
outperform the trigram language model. They also interpolated
a grammar-based model with trigram model, and the
interpolated model outperformed the original grammar-based
model and trigram model. Chelba & Jelinek [6] and Roark [7]
used the word-level interpolation. Charniak interpolated the
probabilities of entire sentences [5]. This is a much less
powerful technique than the word-level interpolation, but he
still observed a significant gain in performance.

Considering these previous researches, we interpolate our
dependency structure language model with a bigram language
model. We interpolated the probabilities of the entire sentence
(query q) as Charniak did. We also use a dependency structure
language model, which is restricted to only bigram dependency
(that is, assuming the dependency parse tree is linear) as a

bigram language model. We define the interpolated model
using the Jelinek-Mercer smoothing method as follows:

),()1()(

)(

q,dMSαq,dMSα

q,dMS

BigramJDSLMMiniparJDSLM

InterpJDSLM

−−−−

−−

⋅−+⋅=

(14)

where α is a tunable constant parameter, MSDSLM-J-Minipar is a
query-document scoring function in (9) using a dependency
parse tree generated by Minipar, and MSDSLM-J-Bigram is a query-
document scoring function in (9) that is restricted to only bigram
dependency.

We also define the interpolated model using the Dirichlet
smoothing method in the same manner.

IV. Experiment

1. Experiment Design

The goal of our experiment is to answer the following three
questions:

Will the dependency structure language model be effective for
information retrieval? To answer this question, we will compare
the performance of the dependency structure language model
with that of the state-of-the-art information retrieval methods,
including the Okapi BM25 and recently proposed language
models for information retrieval.

Will the dependency syntactic structure be more effective than
a bigram model, which only models the co-occurrence of terms
in language modeling for information retrieval? To answer this
question, we will compare the results for the dependency
structure language model using a dependency parse tree with the
results for the same model using only bigram dependency (that is,
assuming the dependency parse tree is linear) and the BBN
method that models bigram production [1].

Will the interpolating dependency structure language model
with bigram language model be effective? To answer this
question, we will compare the result of the interpolation model
(that is, DSLM-D-Interpolation and DSLM-JM-Interpolation)
with the results of the other models.

We used two different TREC testing collections for evaluation:
AP88 (Associated Press, 1988) and WSJ90-92 (Wall Street
Journal from 1990 to 1992). The queries are TREC topics 202-250
(title field only) on TREC disks 2 and 3. We excluded the TREC
topic 201 from the experiments because the topic's relevant
documents are not included in the AP88 test collection. We used
relatively small test collections (AP88 and WSJ90-92) because of
the cost for parsing the entire collection. The dependency parse tree
of the user query is obtained by the dependency parser (Minipar) at
the search time, and the dependency relation information between

342 Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006

the two terms in a document is obtained by the dependency parser
at the indexing time.

In our experiment, k, λ1 (or μ1), λ2 (or μ2), λ3 (or μ3), and α
are determined by performing a parameter tuning. This involves
running the model with several different values and measuring
the performance of the model. The best performing value is then
chosen.

2. Baseline Methods

The three baseline methods are the Okapi BM25 [15], Zhai's
language model [4], and the BBN method [1]. The formula for
the Okapi BM25 (simplified version: k2=0, k3=∞, c=1) is
given by

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+−

⋅
++−

⋅=
i i

i

iavdl
dl

i
iBM .n

.nN
tfbbk

tfqtfq,dMS
d 50

50log
)1(

)(
1

25 ,

where tfi is the term frequency of qi in document d, ni is the
document frequency for qi, N is the number of documents in the
collection, dld is the document length, avdl is the average
document length for all the documents in the collection, qtfi is
frequency of occurrence of the query term qi within a specific
query, and k1 and b are determined by performing a parameter
tuning.

In Zhai and Lafferty [4], three smoothing methods are
compared. We use two smoothing methods (Jelinek-Mercer and
Dirichlet) as our baseline methods. The formula, which uses the
Jelinek-Mercer smoothing method, is given by

,
)(

)()1(
1log)(

0);(:
∑

>
− ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅−
+=

dqci i

iml
JLM

i
cqpλ

dqpλ
q,dMS

where λ is determined by performing a parameter tuning.
The formula applied Dirichlet smoothing method is given by

,log
)(

);(
1log)(

0);(: μd
μn

Cqpμ
dqc

q,dMS
i

i

dqci
DLM

i
+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+= ∑

>
−

where n is the number of query terms, |d| is the document length,
and μ is determined by performing a parameter tuning.

The BBN group suggested a hidden Markov model (HMM)
that models bigram production [1]. The formula for the BBN
method is given by

,))()()((

)(

1210∏ −

−

⋅+⋅+⋅=
i

iimlimli

BrgramBBN

,dqqpadqpaCqpa

q,dMS

where qi is the current word of the query, qi-1 is the previous
word, and a0, a1 and a2 are determined by performing a
parameter tuning.

3. Experiment Results

The results on the AP88 test collection are shown in Tables 1
and 2. Table 3 shows the results of the WSJ90-92 test
collection. In each table, we include the precision at different
recall points and the average precision (non-interpolated).

In Table 1, BM25 stands for Okapi BM25 formula, LM-D
stands for Zhai's model applied to the Dirichlet smoothing
method, DSLM-DB stands for a dependency structure language
model that is restricted to only bigram dependency, DSLM-DM
stands for a dependency structure language model using
dependency parse tree generated by Minipar, and DSLM-DI
stands for the interpolation model of DSLM-DM and DSLM-DB.

As seen from Table 1, the dependency structure language
model applied to the Dirichlet smoothing method using the
dependency parse tree generated by Minipar (DSLM-DM) has a
significant gain in performance. DSLM-DM achieved about
5.99% improvement compared to BM25 in the average
precision (the difference is not statistically significant). DSLM-
DM also achieved about 7.67% improvement compared to
Zhai's model (LM-D) in the average precision (the difference is
statistically significant at the 0.05 level). And DSLM-DM
achieved about 1.74% improvement compared to DSLM-DB
(again, the difference is not statistically significant).

One notable fact is that the DSLM-DM performance includes
the error of Minipar parsing in the given corpus. We hope we can
achieve much better performance if we can improve the
dependency parsing accuracy, which is about 85% in the current

Table 1. Results for AP88 collection for Dirichlet smoothing.
(BM25: k1=0.35, b=0.5; LM-D: µ= 8000; DSLM-DB:
k=0.2, µ1=8000, µ2=50, µ3=100000; DSLM-DM: k=0.35,
µ1=10000, µ2=10, µ3= 50000; DSLM-DI: α = 0.6)

Rec BM25 LM-D DSLM-DB DSLM-DM DSLM-DI

0.0 0.6631 0.6015 0.6163 0.6530 0.6550

0.1 0.5080 0.4949 0.5001 0.5375 0.5366

0.2 0.4244 0.4346 0.4386 0.4542 0.4598

0.3 0.3720 0.3848 0.4113 0.4001 0.4101

0.4 0.3312 0.3407 0.3679 0.3582 0.3653

0.5 0.2949 0.3153 0.3210 0.3133 0.3181

0.6 0.2269 0.2274 0.2536 0.2551 0.2586

0.7 0.1679 0.1737 0.1977 0.2034 0.2099

0.8 0.1194 0.1050 0.1201 0.1221 0.1244

0.9 0.0752 0.0630 0.0727 0.0733 0.0734

1.0 0.0520 0.0462 0.0496 0.0557 0.0556

AvgP 0.2754 0.2711 0.2869 0.2919 0.2959

ETRI Journal, Volume 28, Number 3, June 2006 Changki Lee et al. 343

Minipar system. In Table 1, DSLM-DI also has the best average
precision. DSLM-DI achieved about 1.37% improvement
compared to DSLM-DM. Thus, the table also shows that the
interpolating dependency structure language model with bigram
language model is as effective in information retrieval as it is in
the speech recognition field.

In Table 2, LM-J stands for Zhai's model with the Jelinek-
Mercer smoothing method, and BBN-B stands for the BBN
method that models bigram production. Table 2 also shows that

Table 2. Results for AP88 collection for Jelinek-Mercer smoothing.
(LM-J: λ=0.6; BBN-B: a0=0.32, a1=0.03, a2=0.65; DSLM-
JB: k=0.5, λ1=0.8, λ2=0.85, λ3=0.999; DSLM-JM: k=0.4,
λ1=0.7, λ2=0.05, λ3=0.85; DSLM-JI: α=0.7)

Rec LM-J BBN-B DSLM-JB DSLM-JM DSLM-JI

0.0 0.6058 0.5937 0.5938 0.6459 0.6426

0.1 0.4761 0.4919 0.5068 0.5026 0.5145

0.2 0.4109 0.4437 0.4481 0.4431 0.4575

0.3 0.3444 0.3590 0.3490 0.3563 0.3643

0.4 0.2786 0.3122 0.3191 0.3224 0.3326

0.5 0.2518 0.2788 0.2819 0.2963 0.2885

0.6 0.1953 0.2068 0.2141 0.2217 0.2254

0.7 0.1620 0.1764 0.1776 0.1841 0.1863

0.8 0.1205 0.1316 0.1366 0.1292 0.1354

0.9 0.0738 0.0811 0.0868 0.0787 0.0856

1.0 0.0482 0.0540 0.0586 0.0577 0.0622

AvgP 0.2480 0.2648 0.2683 0.2712 0.2782

Table 3. Results for WSJ90-92 collection for Dirichlet smoothing.
(LM-D: µ=10000; DSLM-DM: k=0.15, µ1=50000, µ2=10,
µ3=100000; DSLM-DI: α =0.6)

Rec LM-D DSLM-DM % change over
LM-D DSLM-DI

0.0 0.6505 0.6492 -0.20 0.6528

0.1 0.4601 0.4724 +2.60 0.4755

0.2 0.3572 0.3765 +5.13 0.3780

0.3 0.2575 0.2802 +8.10 0.2816

0.4 0.1764 0.2148 +17.88 0.2322

0.5 0.1482 0.1850 +19.90 0.2011

0.6 0.1195 0.1533 +22.05 0.1666

0.7 0.0674 0.0999 +32.53 0.1078

0.8 0.0559 0.0762 +26.64 0.0809

0.9 0.0360 0.0544 +33.82 0.0622

1.0 0.0226 0.0377 +40.05 0.0405
AvgP 0.1890 0.2101 +10.04 0.2172

the dependency structure is more effective than the bigram in
language modeling for information retrieval.

DSLM-JM achieved about a 9.35% improvement for Zhai's
model with the Jelinek-Mercer smoothing method (LM-J) in
average precision (statistically significant at the 0.05 level).
DSLM-JM also achieved about 2.42% improvement over
BBN-B (the difference is statistically significant at the 0.10
level). DSLM-JM achieved about 1.08% improvement for
DSLM-JB (the difference is not statistically significant).
DSLM-JI (the best parameter value is α = 0.7) has the best
average precision.

Tables 3 and 4 show the results for the WSJ90-92 test
collection. As seen from Table 3, DSLM-DM and DSLM-JM
have significant gains in performance compared to LM-D and
LM-J, respectively (statistically significant at the 0.10 level).
DSLM-DI (α= 0.6) and DSLM-JI (α= 0.4) also have the best
average precisions, respectively. So, in general, we can verify
that the dependency structure language model is more effective
than the conventional language modeling for information
retrieval, and the interpolating dependency structure language
model with bigram language model is as effective in
information retrieval as it is in the speech recognition field.

Table 4. Results for WSJ90-92 collection for Jelinek-Mercer
smoothing. (LM-J: λ=0.8; DSLM-JM: k=0.35, λ1=0.7,
λ2=0.05, λ3=0.95; DSLM-JI: α=0.4).

Rec LM-J DSLM-JM % change over
LM-J DSLM-JI

0.0 0.5461 0.5619 +2.81 0.5924

0.1 0.4391 0.4566 +3.83 0.4676

0.2 0.3717 0.3782 +1.72 0.3897

0.3 0.2826 0.2991 +5.52 0.3196

0.4 0.2258 0.2529 +10.72 0.2517

0.5 0.1782 0.2103 +15.26 0.2211

0.6 0.1360 0.1586 +14.25 0.1597

0.7 0.0736 0.0783 +6.00 0.1016

0.8 0.0563 0.0548 -2.74 0.0723

0.9 0.0310 0.0287 -8.01 0.0430

1.0 0.0161 0.0169 +4.73 0.0283

AvgP 0.1951 0.2094 +6.83 0.2215

V. Conclusion

In the language model for information retrieval, unigram and
bigram language models have some limitations to capture the
underlying semantics in a document due to their inability to
handle long-distance dependencies. In this paper, we propose a

344 Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006

dependency structure language model to compensate for the
weakness of the unigram and bigram language models in
information retrieval. The dependency structure language model
is based on the first-order dependency model and the
dependency parse tree generated by a dependency parser. Thus,
long-distance dependencies can be naturally handled by the
dependency structure language model. We carried out some
experiments to verify the proposed model. The experiments
were performed on both AP88 and WSJ90-92 test collections.
Based on the experiment results, we can draw the following
conclusions:

1) Based on the comparison between the dependency structure
language model and traditional language model and the Okapi
BM25 method, we can conclude that the dependency structure
language model for information retrieval is an effective retrieval
method. In our experiments, the dependency structure model
gives a better performance than both the traditional language
model (statistically significant at the 0.05 level) and the Okapi
BM25 method (the p-value is 0.186).

2) Based on the comparison between the dependency structure
and bigram dependency in language modeling for information
retrieval, we can also conclude that the dependency structure is
more effective than the bigram in language modeling for
information retrieval (not statistically significant).

3) Based on the comparison between the interpolation model
and the dependency structure language model, we can also
conclude that the interpolating dependency structure language
model with bigram language model is also effective in
information retrieval.

The disadvantage in using the dependency parser is that the
computational cost of a dependency parse tree becomes high
because the dependency parse tree of the user query is obtained
by a dependency parser at the search time, and the co-occurrence
information between the two terms are obtained by a
dependency parser at the indexing time (in general, the cost of
any language parsing is O(n3)). To reduce this computational cost,
we need to find a way that we do not rely on a full dependency
parser, but use a more simplistic phrase chunker or partial parser
in the future.

References

[1] D. Miller, T. Leek, and R. M. Schwartz, “A Hidden Markov Model
Information Retrieval System,” Proc. 22nd Annual Int’l ACM SIGIR
Conf. on Research and Development in Information Retrieval, 1999,
pp. 214–222.

[2] J. M. Ponte and W. B. Croft, “A Language Modeling Approach to
Information Retrieval,” Proc. 21st Annual Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval, 1998, pp. 275–

281.
[3] F. Song and W. B. Croft, “A General Language Model for

Information Retrieval (Poster Abstract),” Proc. of the 22nd Annual
Int’l ACM SIGIR Conf. on Research and Development in Information
Retrieval, 1999, pp. 279–280.

[4] C. Zhai and J. Lafferty, “A Study of Smoothing Methods for
Language Models Applied to Ad Hoc Information Retrieval,”
Research and Development in Information Retrieval, 2001, pp. 334–
342.

[5] E. Charniak, “Immediate-Head Parsing for Language Models,” Proc.
Thirty-Ninth Annual Meeting of the Association for Computational
Linguistics and Seventeenth Int’l Conf. on Computational Linguistics,
2001, pp. 116–123.

[6] C. Chelba and F. Jelinek, “Exploiting Syntactic Structure for
Language Modeling,” Proc. Thirty-Sixth Annual Meeting of the
Association for Computational Linguistics and Seventeenth Int’l Conf.
Computational Linguistics, San Francisco, California, 1998, pp. 225–
231.

[7] B. Roark, “Probabilistic Top-Down Parsing and Language
Modeling,” Computational Linguistics, vol. 27, no. 2, June 2001,
249–276.

[8] C. V. Rijsbergen, Information retrieval, Butterworths, 1979.
[9] J. Gao, J.-Y. Nie, G. Wu, and G. Cao, “Dependence Language Model

for Information Retrieval,” Proc. 27th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2004, pp. 170–177.

[10] R. Duda and P. Hart, Pattern Classification and Scene Analysis, A
Wiley-Interscience Publication, 1973.

[11] C. Chow and C. Liu, “Approximating Discrete Probability
Distributions with Dependence Trees,” IEEE Transactions on
Information Theory, vol. IT-14, May 1968, 462–467.

[12] D. Hays, “Dependency Theory: Formalism and Some Observations,”
Language, vol. 40, no. 4, 1964, 511–525.

[13] D. Lin, “Principa - An Efficient, Broad-Coverage, Principle Based
Parser,” Proc. Fifteenth International Conference on Computational
Linguistics, COLING-ACL, 1994, pp. 109–126.

[14] MINIPAR: 1998. http://www.cs.ualberta.ca/_lindek/minipar.htm.
[15] S. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and

M. Gatford, “Okapi at TREC-3,” Proc. Second Text Retrieval
Conf. (TREC-3), 1995.

ETRI Journal, Volume 28, Number 3, June 2006 Changki Lee et al. 345

Changki Lee has received the BS degree in
computer science from KAIST, Korea in 1999.
He received the MS and PhD degrees in
computer engineering from POSTECH, Korea in
2001 and 2004. Since 2004, he has been with
Electronics and Telecommunications Research
Institute (ETRI), Korea, as a Senior Member of

Research Staff. He has served as a reviewer for some international
journals such as Information System and Information Processing &
Management. His research interests are in natural language processing,
information retrieval, information extraction, question answering, spoken
language understanding, and semantic web.

Gary Geunbae Lee received the BS and MS
degrees in computer engineering from Seoul
National University in 1984 and 1986. He
received the PhD in computer science from
UCLA in 1991, where he was a research scientist.
He was an Assistant Professor from 1992 to 1996,
and was an Associate Professor beginning in

1997 at POSTECH, where in 2004, he was promoted to a full Professor.
He has authored more than 100 papers in international journals and
conferences and has served as a technical committee member and
reviewer for several international conferences such as ACL, COLING,
ACM SIGIR, IRAL, EMNLP, and others. His current research interests
include natural language processing, biological text mining, spoken
language understanding, and TTS systems.

Myung-Gil Jang received the BS and MS
degrees in computer science & statistics from
Pusan National University, Korea in 1988 and
1990. He received the PhD degree in information
science from Chungnam National University in
2002. He was with System Engineering Research
Institute (SERI), Korea, from 1990 to 1997 as a

researcher. Since 1998, he has been with ETRI, Korea, as a
Senior/Principle Member of Research Staff. His research interests are
natural language processing, information retrieval, question answering,
knowledge & dialogue processing, media retrieval/management, and
semantic web.

346 Changki Lee et al. ETRI Journal, Volume 28, Number 3, June 2006

