
In mobile communications, a class of variable-
complexity algorithms for convolutional decoding known 
as sequential decoding algorithms is of interest since they 
have a computational time that could vary with changing 
channel conditions. The Fano algorithm is one well-known 
version of a sequential decoding algorithm. Since the 
decoding time of a Fano decoder follows the Pareto 
distribution, which is a heavy-tailed distribution 
parameterized by the channel signal-to-noise ratio (SNR), 
buffers are required to absorb the variable decoding 
delays of Fano decoders. Furthermore, since the decoding 
time drawn by a certain Pareto distribution can become 
unbounded, a maximum limit is often employed by a 
practical decoder to limit the worst-case decoding time. In 
this paper, we investigate the relations between buffer 
occupancy, decoding time, and channel conditions in a 
system where the Fano decoder is not allowed to run with 
unbounded decoding time. A timeout limit is thus imposed 
so that the decoding will be terminated if the decoding 
time reaches the limit. We use discrete-time semi-Markov 
models to describe such a Fano decoding system with 
timeout limits. Our queuing analysis provides expressions 
characterizing the average buffer occupancy as a function 
of channel conditions and timeout limits. Both numerical 
and simulation results are provided to validate the 
analytical results. 
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I. Introduction 

The popularity of cellular telephones is driving the trend of 
mobile communications systems. A very significant challenge 
imposed by mobility is the need for designs that can efficiently 
use the battery power of mobile communication terminals. For 
example, a user that is located close to a base station should be 
able to operate at lower power than users roaming further away. 
Similarly, low-power decoding is desired when the available 
power is low or the user foresees the need for an extended use 
before battery re-charging. In these scenarios, variable-
complexity (VC) algorithms are beneficial as their 
computational complexity can be varied (usually as a tradeoff 
with certain performance metrics) according to the changing 
needs, thereby enabling variable power consumptions of the 
system running the VC algorithm. In this work, we investigate 
VC channel decoders. 

To decode a convolutional code over a memoryless channel, 
we compute the distances between the received code word r 
and all possible transmitted code words v. The log-likelihood 
function log P(r|v), denoted by M(r|v), is called the metric 
associated with the path (codeword) v, which is a measure of 
the closeness between the received sequence and the coded 
sequence. Note that the metrics are typically converted to 
integers in practical implementations [1]. The criterion for 
deciding between two paths through the trellis is to select the 
one having the larger metric. Among many decoding 
algorithms, the Viterbi algorithm (VA) is the most popular 
approach. It is a maximum-likelihood (ML) decoding 
algorithm that guarantees optimum decoding of the 
convolutionally encoded information sequence. That is, the 
decoder output selected is always the codeword that maximizes 
the conditional probability of the received sequences [1]. The 
VA is also well suited for hardware implementation due to its 
regular computation structure. On the other hand, a Viterbi 
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decoder is of fixed complexity in that it has to examine all 
branches in the code tree regardless of the channel conditions. 
Therefore, under high channel signal-to-noise-ratio (SNR) 
conditions, faster decoding is not available with the Viterbi 
algorithm when the received sequence is “easier” to decode. 
By contrast, sequential algorithms are of interest since they 
allow decoding complexity to vary with changing channel 
conditions. Sequential decoding of convolutional codes was 
introduced in 1957 by Wozencraft as a sub-optimal method of 
maximum likelihood sequence estimation with typically lower 
computational complexity than the Viterbi algorithm at high 
SNR's [1]. One version of sequential decoding algorithms, the 
Fano algorithm [2]-[4], is considered in this work. It was 
reported in [5] and [6] that very large-scale integrated (VLSI) 
chips based on the Fano algorithm achieved significantly lower 
energy consumption for an AWGN channel with a high SNR 
(≥ 6 dB), compared to the Viterbi decoder. 

A Fano decoder explores one potential path at a time by 
examining its metric. If the metric value stays above a threshold 
S, the decoder moves back to examine other paths. If no path can 
be found whose metric value dips below the threshold, the 
threshold is then loosened by adding an increment Δ (i.e., S ← S 
+ Δ) and the decoder moves forward again with a lower 
threshold. To ensure no endless loop occurs, the threshold is 
tightened (S ← S – Δ) as long as the decoder moves forward to a 
node as a first visit. The decoder will eventually reach the end of 
the tree. Interested readers may refer to page 620 in [1] for a 
detailed description of the Fano algorithm. The Fano algorithm is 
a variable-complexity algorithm with complexity varying with 
channel conditions—at a high channel SNR, the decoder tends 
to move very quickly to the end of the code tree, thereby 
finishing the decoding quickly. However, if the channel is very 
noisy, the decoder has to move along different paths of the code 
tree, resulting in a much higher number of computations. Thus, 
the Fano decoder incurs a non-deterministic processing delay 
since the number of computations performed in decoding a 
block of data is a random variable, which has been found by 
random coding analysis to follow closely the Pareto distribution 
[1], [7], [8], [9] and [10]. In real-time Fano decoding systems, a 
buffer is required to smooth out the variable processing delays of 
the Fano decoder. Furthermore, since the decoding complexity 
drawn by a certain Pareto distribution can become unbounded, a 
maximum (timeout) limit is often employed in a practical 
decoder to limit the worst-case decoding complexity [6], [11]. It 
is conceivable that the complexity of decoding some excessively 
corrupted blocks (coming from an extremely noisy channel) 
could become infinite if the decoder gets trapped in some erratic 
back and forth moves on the code tree. In practical 
implementations of Fano decoders, therefore, the decoding 
complexity is usually upper-bounded by a certain imposed limit 

on the number of either forward moves [11] or trace back moves 
[6]. Whenever the decoding time of a certain block reaches the 
imposed timeout limit, the decoding of the block is terminated. 
Those blocks that cannot be completely decoded will be 
discarded (lost). Several approaches for recovering lost blocks 
are feasible. For example, a partially decoded block may either 
be subjected to an outer code (for example, a Reed-Solomon 
code) for further error correction [1], [12], and [13], or an 
automatic repeat request (ARQ) will be triggered for the 
retransmission of the lost block [14], [15]. 

In this paper, we model the Fano decoding system with 
timeout as a discrete-time buffer (queue) system, with the goal 
of determining in theory the relations between the average 
buffer occupancy, decoding time, and channel conditions. To 
the best of our knowledge, there has been virtually no prior 
work similar to ours, which provides analytical expressions 
characterizing the average buffer occupancy of Fano decoding 
systems with timeout limits. Note that while we demonstrate 
that the capability of our analysis framework can accommodate 
the integration of the block retransmission into the discrete-
time queue model, a complete analytical treatment of lost block 
recovery is beyond the scope of this paper. 

The remainder of the paper is organized as follows. Section 
II introduces the discrete-time model that is suitable for 
characterizing the queuing behavior of Fano decoding systems. 
Section III presents a detailed queuing analysis of the average 
buffer occupancy based on a semi-Markov model. Section IV 
discusses the integration of the ARQ strategy into the discrete-
time model and its impact on the block arrival rate. Numerical 
and simulation results are then discussed in section V. The 
paper is summarized in section VI. 

II. Discrete-Time Model 

In a practical Fano decoding system, the decoding 
complexity is usually measured in terms of elementary 
computational steps [13]. Therefore, we study the statistics of 
the Fano decoder's input buffer (queue) by using a discrete-
time model, which is also employed in [15].  

In this model, the time axis is partitioned into slots of equal 
length. We assume that the decoder can receive at most one 
new data block during a slot. The new blocks arrive at the 
decoder from the channel according to the Bernoulli process, 
that is, a slot carries an arriving block with probability λ and it 
is idle (no transmission) with probability 1 – λ. 

Another assumption is that the decoding time of a block is in 
chunks of length equal to the slot size. That is, the decoder can 
start and stop decoding only at the end of a slot. This 
approximation will yield an upper bound on the buffer 
occupancy. A block is allowed up to T slots for decoding, that is, 
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III. Queuing Analysis T is the timeout limit. If a block requires j slots for decoding (j 
≤ T), it leaves the system at the end of the j-th slot after the 
beginning of its decoding, and the decoding of a new block 
starts (if there is a new block in the decoder's buffer) at the 
beginning of the following slot. If a block's decoding has to 
take longer than T slots, the decoder stops that block's decoding 
after T slots. This block cannot be completely decoded and 
typically will be discarded (lost). 

In order to determine the average buffer occupancy, we 
employ a semi-Markov model [15], [16], with the state of the 
queue being represented by the pair (n, t), where n is the 
number of blocks in the buffer including the block being 
decoded. Here, we assume the buffer is of infinite length, hence 

∞≤≤ n0 . Also, t is the number of slots of decoding already 
spent on the block that is being decoded currently. Whenever t 
= T (the timeout limit), the block is removed from the buffer 
and considered lost, hence 10 −≤≤ Tt . The state transitions 
are illustrated in Fig. 1.  

To analyze the queue described above, we will make use of 
the following notation: cj ≡ Pr {decoding is completed in 
exactly j slots} and μj denotes the conditional probability that 
decoding is completed in j slots given that the decoding is 
longer than j – 1 slots. This conditional probability is given by Let pn,t be the probability that the decoder's buffer contains n 

blocks, including the one being decoded by the decoder, which 
is in the t-th slot of decoding. The steady-state transition 
equations are given below. 11 −−

=
j
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The decoding time of Fano decoders follows the Pareto 
distribution: 

For n = 1, we have 
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where τ0 is the time such that PF (τ0) = 1, and β (known as the 
Pareto exponent) can be approximated by [15]: 

and 
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where r is the code rate of the convolutional code used, and p is 
the crossover probability of a binary symmetric channel (BSC), 
which can be related to the channel SNR. Typically, a smaller β 
value means a lower SNR, and vice versa.  and 

Given the slot duration Tr, we have ( ) ( ) .11],1[1 1,11,, −≤≤+−−= −−− Tjppp jnjnjjn λλμ   (14) 
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Fig. 1. Transitions of queue states. Note that all the states (n, T–1), where n ≥ 1, have only two possible outgoing transitions 
with probabilities of 1– λ and λ, respectively. 
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and the generating function of the number of blocks in the 
buffer as 
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We have the conservation constraint: 
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Hence, the average buffer occupancy (average number of 
blocks in the buffer) is the derivative of P(z) at z = 1 [16], [17]. 
We proceed to derive an expression for P(z) based on the 
following results given by (18) and (21) (see Appendix A for 
the derivations): 
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Substituting (18) and (21) into (16), we get an expression for 
the generating function as a function of p0,0: 
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where h(z) is defined as 
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Applying the conservation relation (17), we get 
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From (19), (20) and (23), we have 
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Applying L'Hospital's rule, we have 
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Notice that the average decoding (service) time can be 

expressed as 
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And we have ρ ≤ 1 since T ≥ 1. Hence, 
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Thus, (28) can be rewritten as 
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where cλρ = is the utilization (or load of the queue system). 
As long as ρ < 1, we have h(1) > 0. Given the distribution of 
the decoding time in (4), we can determine the largest 
allowable incoming rate c/1max =λ , which will decrease 
with either an increasing timeout limit T or a decreasing β (the 
exponent of the distribution). 

Thus, (25) can be rewritten as 
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We then find the derivative of P(z) from (22) as 
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As shown in Appendix B, 
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where d is the mean square of the decoding time as given by 
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Substituting (33) into (34), we thus obtain the following 
expression for the average number of blocks in the buffer. 
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IV. Retransmission of Timeout Blocks 

In the model described in section II, if the decoding of a 
block cannot be completed within the timeout limit T, then the 
block is considered as lost. In practice, such a lost block may be 
recovered by retransmission [14], [15]. The support for an 
ARQ can be incorporated into the discrete-time model in 
section II: If a block's decoding has to take longer than T slots, 
the decoder terminates that block's decoding after T slots and 
signals to the sender that the decoding fails. Consequently, the 
block is retransmitted at the succeeding slot. As such, any block 
arriving at the buffer will fall into one of the two possible 
categories: either a new block or a retransmitted block. When 
block retransmission is not allowed, new blocks arrive at the 
decoder according to the Bernoulli process, that is, a slot carries 
an arriving block with probability λ, and it is idle (no 
transmission) with probability 1 – λ. When an ARQ is used, we 
should also take into account those retransmitted blocks 
arriving at the buffer during the slots following decoding 
timeouts. The overall probability of the block arrival 
(incoming) rate will be changed to λ'. Because of the 
combining effect, we expect that λ' ≥ λ, which will lead to a 
larger average buffer occupancy as opposed to the previous 
queue model without block retransmission. 

In the following, we will reveal the relationship between the 
overall block arrival rate and the new block arrival rate. A queuing 
analysis similar to those in section III can then be conducted for 
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this modified queuing model, allowing retransmission of timeout 
blocks, by replacing the new block incoming rate (λ in section III) 
with the overall block incoming rate λ'.  

From the perspective of the decoder, at any given time slot, 
either there will be no block being decoded, with probability 1– 
λ', or a block whose decoding will be finished within T slots, 
with probability of λ'FT, where FT  is the distribution of the 
decoding time as defined in (2). Therefore, we have 

Pr {no retransmitted block} = 1 – λ' + λ'FT.      (40) 

From the perspective of the buffer, at any given time slot, 
there will be a block arriving at the buffer unless the following 
two conditions are satisfied: i) there will be no new block 
arrival, with probability 1 – λ, and ii) there will be no 
retransmitted block arrival, with the probability given in (40). 
Hence, the overall block arrival probability λ' can also be 
expressed as 

 
λ' = 1 – Pr {no incoming block} 
  = 1 – Pr {no new block} × Pr {no retransmitted block} 

= 1 – (1 – λ)(1 – λ' + λ'FT).                      (41) 
 

From (41), we can obtain the overall block arrival probability as 
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λ
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It can be easily shown that λ' ≥ λ. From Fig. 2, we can see 
that as the probability of decoding timeout increases, that is, as 
FT decreases, the overall rate λ' increases for a given new block 
arrival rate λ. This is expected since there will be more and  
 

 

Fig. 2. The relation between the overall block incoming rate and
new block incoming rate. 
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more retransmitted blocks as FT decreases. In the extreme case 
of FT = 0, every new coming block (if any) will result in a 
retransmitted block, which will in turn result in another 
retransmitted block, and so on. Therefore, the overall incoming 
rate will reach 1. The other extreme is when FT = 1, which 
means that each block will be decoded within T slots with 
probability 1. In this case, we have λ' = λ. 

V. Results 

In this section, we will evaluate the analytical results 
obtained in section III numerically. We will then present the 
simulation results to further validate the numerical results.  

1. Numerical Results 

Without loss of generality, we choose the duration of a single 
time slot as Tr = 1 in (6) and τ0 = 1 for the Pareto distribution 
given in (4). That is, the minimum time it takes the decoder to 
decode a block is one time slot. Then, for a given β, the average 
decoding time c and the mean square of the decoding time 
d can be calculated according to (29) and (36), respectively. 

As shown earlier, λ (the probability of having an incoming 
block in a time slot, which can be viewed as the data block 
incoming rate) cannot be chosen arbitrarily. There exists a 
largest allowable value c/1max =λ  for a given T and β as 
shown in Fig. 3. If λ > λmax, then the buffer occupancy will go 
to infinity. As can be seen in Fig. 3, if β = 1.5 and T = 100, then 
λmax < 0.3. However, if β = 2.5 and T = 100, then λmax > 0.4. 
This is because a larger β generally corresponds to a higher 
channel SNR, and thus a shorter decoding time on average. 
Consequently, the Fano decoder that decodes faster can handle 
a higher data income rate. On the other hand, for the same β, 
 

 

Fig. 3. The largest allowable incoming rate λmax versus timeout 
limit T.
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λmax generally decreases with increasing T, which is to be 
expected. However, if the channel condition is sufficiently good 
(for example, λmax = 2.5), then λmax tends to be less insensitive to 
the change of T after T goes beyond a certain value (T > 10 in the 
case of β = 2.5). This is also expected since if the timeout limit is 
large enough, then most of the data blocks from the good 
channel can be completely decoded prior to timeout. Note that in 
Fig. 3, curves corresponding to different β values converge at T = 
2. The reason for this is that the average decoding time c turns 
out to be the same regardless of the β value. This is also true for 
the special case of T = 1. 

Numerical results for the average buffer occupancy are 
summarized in Fig. 4 for two β values. We can see that the 
average buffer occupancy (number of blocks) increases 
monotonically with increasing probability of arriving blocks. 
On the other hand, the average buffer occupancy decreases 
monotonically with decreasing limits of decoding time T. This 
 

 

Fig. 4. Average buffer occupancy as a function of timeout limit T
and β. 
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is expected since a smaller T means that the decoder is given a 
tighter time budget to decode a block. Consequently, more blocks 
that require a long decoding time will be simply discarded to 
make the buffer less occupied. On the other hand, since a larger β 
corresponds to a higher channel SNR, and in turn to a smaller 
average decoding time, for fixed λ and T, the average buffer 
occupancy will decrease with an increasing β (with the case of T 
= 1 being the only exception, which is explained below). Note in 
Fig. 4(a), the curves for T = 100 and T = 1000 overlap almost 
completely with each other. This means that if the channel is 
sufficiently good (β = 2.5), then the buffer occupancy becomes 
insensitive to the change of timeout limits. The reason why the 
curves corresponding to T = 1 do not resemble the other curves 
for T > 1 is that when T = 1, the Markov model depicted in Fig. 1 
degenerates into a simple two-state model, as shown in Fig. 5. A 
steady-state analysis of this model can readily yield the state 
probabilities as p0,0 = 1 – λ, and p1,0 = λ. Hence the average buffer 
occupancy is 0 × p0,0 + 1 × p1,0 = λ. That is, for the case of T = 1, 
the average buffer occupancy grows linearly with an increasing λ 
(note the Log scale used for the buffer occupancy in Fig. 4) and is 
independent of the Pareto exponent β. This is also expected since 
T = 1 means that each block can only spend at most 1 time slot for 
decoding before the decoding reaches its timeout limit. 

In fact, we can also obtain the same result by using (37) for T 
= 1. From (29) and (36), we have 1== dc . Then from (31), 
we have ρ = λ. We thus have u = 1 and v = 1 from (38) and (39). 
Substituting into (37), we can therefore find the average buffer 
occupancy to be λ. 
 

 

Fig. 5. The two-state Markov model. 
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2. Simulation Results 

We simulated the Fano decoding system with timeout based 
on the discrete-time model described in section II. Random 
number generators were used to simulate the Bernoulli block 
arrival process as well as the Fano decoding time, which follows 
the Pareto distribution given in (4). During the simulation, the 
number of data blocks in the queue was recorded for each time 
slot. Then the average buffer occupancy over the duration of the 
simulation could be calculated. The average buffer occupancies 
found through simulations of 107 time slots for β = 0.5 and β = 
2.5 are shown in Fig. 6. It can be seen that the simulation results 
agree fairly well with the numerical results in Fig. 4. However, 
the effect of finite duration of the simulations can also be 
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observed in Fig. 6. That is, when the block incoming rate 
approaches λmax in Fig. 3, as prescribed by the theory, the 
theoretical average buffer occupancy will jump quickly to ∞ as 
shown in Fig. 4. By contrast, the average buffer occupancies 
obtained via simulation tend to move gradually towards 
“infinity”, which is actually the largest possible buffer occupancy 
that can be achieved for the duration of the simulation. In the 
worst case, the decoder can take forever to decode a block, and 
there will be a block arrival for each time slot. Therefore, the 
largest possible buffer occupancy is the duration (total number of 
time slots) of the simulation (107 blocks in Fig. 6). 
 

 

Fig. 6. Average buffer occupancy obtained by simulations. 
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VI. Concluding Remarks 

In a practical Fano decoding system, not only are buffers 
required to absorb the variable processing delays of the sequential 
decoders, but also a limit will often be imposed in the decoder so 

that the decoding operation will be terminated if the decoding 
time reaches the limit. We have investigated the queuing behavior 
of a Fano decoding system with buffer by modeling the system 
with timeout limits using discrete-time semi-Markov models. The 
queuing analysis reveals the relations between the average buffer 
occupancy, the channel conditions, and decoding time limits. The 
largest possible incoming rate is also determined as a function of 
the Pareto exponent and decoding timeout limits. 

In a practical decoding system, there is the issue of buffer 
capacity planning, which typically involves trade-offs between the 
assignment of buffer size and the probability of buffer overflow 
due to finite buffer sizes. A conservative approach can be taken by 
assuming that the timeout limit is sufficiently large (for example, T 
= 1000). From Fig. 4, the buffer sizes of 100 and 10,000 can be 
chosen under varying β values (that is, varying channel conditions). 
It can be inferred from Fig. 3 that even larger buffers will offer little 
help in lowering the buffer overflow probability as the data arrival 
rate approaches the maximum allowable limits. 

We should point out that the expression in (37) is a fairly 
generic result, as it does not require the decoding time to follow 
necessarily the Pareto distributions. In fact, given any 
probabilistic distribution (either theoretical or empirical) of the 
decoding time, we can determine the average buffer occupancy 
by utilizing (37). Therefore, theoretical results obtained in this 
paper are applicable to other channel decoders with the 
characteristics of variable decoding time. For example, both the 
Turbo decoder [18] and the low-density parity check decoders 
[19] exhibit variable decoding latencies due to multiple 
decoding iterations, where the number of iterations actually 
chosen can be viewed as a controllable timeout limit. 

Appendix A. Derivations of P0 (z) and Pj (z) 

From (15), we have 
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where we define 

.1)( zzf λλ +−≡                (43) 

Using (9) for 0,0pλ , we obtain the expression for P0(z), 
which is related to Pj(z) for j ≥ 1 as 
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Next, we derive the expression for Pj(z) for j ≥ 1. From (12) 
and (14), 
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Generally, for j ≥ 1 we have 
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From (45) and (46), we get 
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Substituting (47) into (44) yields 
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where g(z) is defined as 

.)()1()()(
1

1
1∑

−

=
−−+≡

T

j

T
T

j
j zfFzfczg         (49) 

 From (48), we have 

.)1()()(1 0,00 pzzP
z
zg

−=⎥⎦
⎤

⎢⎣
⎡ − λ          (50) 

Hence, 

.
)(

)1(
)( 0,0

0 zgz
pzz

zP
−

−
=

λ
             (51) 

Appendix B. Derivations of (35) 

In the following, we derive the expression for h'(1), which is 
used in (34) to determine the average buffer occupancy. 

From (23), by applying L'Hospital's rule twice we obtain 
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From (19), we can find and by using 
the fact that , and , 
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where c is the average decoding time as given in (29). Since 
we require ρ < 1, therefore 
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where d is the mean square of the decoding time as given by 
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It can be easily shown that cd ≥ since . Hence, we 
have , and thus  by using (55). Therefore, 
from (52), (54) and (56), we have 
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