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ABSTRACT⎯In this letter, a discrete state, discrete time 
chaotic pseudo random number generator (CPRNG) is 
presented for stream ciphering of text, audio, or image data. 
The CPRNG is treated as a finite state machine, and its state is 
modulated according to the input bit sequence of the signal to 
be encrypted. The modulated state sequence obtained can be 
transmitted as a spread spectrum or encrypted data. 

Keywords⎯Chaos, cryptography, finite state machines, 
spread spectrum communication. 

I. Introduction 
Chaos is a deterministic, random-like process found in a 

non-linear dynamical system that is non-periodic, non-
converging, and bounded. The fundamental characteristics of 
chaos, such as ergodicity, mixing property, and sensitivity to 
initial conditions/control parameters are properties of good 
ciphers, which also include confusion/diffusion, balance, and 
avalanche effect [1]. A chaotic sequence has also been used for 
a spread-spectrum sequence in place of a pseudo random 
number sequence in conventional CDMA direct sequence 
spread spectrum communication systems [2]. Chaotic pseudo 
random number generators (CPRNGs) have particular 
attractive properties that guarantee the uniqueness of the 
generated sequences for any chosen seed and the independence 
of the generated numbers along an obtained trajectory [3]. 

There are several sufficient conditions to be satisfied by a 
dynamic system to guarantee chaos, among which sensitivity 
to the initial conditions and topological transitivity are the most 
common [4]. An important property of a chaotic system 
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defined by f( ) is bifurcation, which is measured by Lyapunov 
exponent (λ). Lyapunov exponent (λ) is a measure of the 
trajectory of function f( ) in the neighborhood of χ0 and, as in 
[4], is defined for a continuous state discrete time system by  
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For encryption process E on plain text P, let the encryption 
key space be denoted by K; then, the encryption scheme (or 
cipher in a system) that gives cipher text C is given by 

**: CKPE →× .               (2) 

The received cipher text C is decrypted as 

**: PKCD →× ,              (3) 

such as for each Ke ∈ there exists a unique key Kd ∈ and  
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Symmetric encryption based on a logistic map has been 
suggested in [5]-[8] with an initial seed and α being a hidden 
parameter or key [5]. However, hiding both the initial seed and 
scale α is not sufficient for security [6], and an iterative 
approach [7] may reveal the key if a very large encrypted 
sequence is captured. In [7], the tent map was used as a 
sequence generator. It has also been shown [8] that if the 
chaotic scheme is unknown, then a return map will provide a 
clue as to the family that the chaotic scheme belongs to. This 
means that the attractor, the parameter, and the initial seed can 
be discerned from the encrypted data allowing the message to 
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be decoded given a sufficiently large sequence. 
In order to overcome the above problem, a new algorithm 

has been proposed that uses two CPRNGs, their states 
modulated separately by two other CPRNGs. The scheme is 
inspired by the chaos shift keying proposed for analog 
communication [9]. In this letter, the proposed algorithm has 
been tested for encrypting text messages, audio streams, and 
images over an IP network. 

II. Chaotic-State-Modulated Spread Spectrum 

For the generation of a chaotic sequence, there are many 
existing functions that can be used such as Chebyshev map, 
Tent map, Logistic map, and so on [4], [5]. In this work , two 
new functions are proposed: 

)))((log1(*)(*259075.6)1( 10 iyiyiy −=+ , and      (5) 

)))(tan(1(*)(*3726.3)1( iyiyiy −=+ .        (6) 

These functions iterate, and a number is outputted as a part of 
a chaotic sequence. A chaotic sequence generator is ideally an 
infinite state machine that is converted into a finite state 
machine by quantizing its output using a ‘B’ bit quantizer as 
shown in Fig. 1(a). The output of this generator is pseudo 
random and is used for spreading the input signal. For the 
generation of a state modulated spread spectrum, two CPRNGs 
use different generation equations, for example, (5) and (6), 
with different initial seeds. However, for message recovery, the 
same initial seeds and equations are known at the receiver as 
well. Even a small change in the seeds will cause different 
numbers to be generated, and the message will not be 
recovered. For each binary message bit, both the CPRNGs 
make state transitions from their initial state to a new one. The 
new state achieved may not be the immediate next state, but 
rather during this process many states may be skipped. In the 
case of a ‘0’ in the input message, CPRNG3 goes from the i-th 
state to the (i+M)th state, while in the case of ‘1’, CPRNG4 
goes from the j-th state to the (j+N)th state, that is, CPRNG3 
iterates M times while CPRNG4 iterates N times. This results 
in state modulation of the finite state machine according to the 
input bit. If the current bit is ‘0’, the value of CPRNG3 is 
selected, while in the case of a ‘1’, the output of CPRNG4 is 
selected. The selected output is then transmitted instead of the 
input bit giving a bandwidth expansion of ‘B’ times. Figures 
1(b) and 1(c) show block diagram implementations of the 
chaotic spread spectrum transmitter and receiver. 

To increase the complexity, two more CPRNGs (CPRNG1 
and CPRNG2, as shown in Fig. 1) are used with their outputs  

 

Fig. 1. Block diagrams of (a) chaotic pseudo random number 
generator used in chaotic state modulated spread 
spectrum, (b) transmitter, and (c) receiver. 
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connected to k3 and k4. Thus, instead of using fixed values of ‘M’ 
and ‘N’, the number of states skipped varies and depends upon the 
outputs of the previous CPRNGs. This results in a chaotic 
modulation of states for the two CPRNGs, and the signal 
transmitted is thus a chaotic-state-modulated spread spectrum signal. 

At the receiver, when the ‘B’ bits are received, CPRNG1 and 
CPRNG2 make a transition from their initial state to the next 
state (k1 = k2 = 1 both for the transmitter and receiver). Both of 
these new states are given to CPRNG3 and CPRNG4 in order to 
decide on the number of times these CPRNGs (CPRNG3 and 
CPRNG4, as shown in Fig. 1) will have to iterate. The values, 
obtained after k3 and k4 numbers of iterations from CPRNG3 
and CPRNG4, respectively, are compared with the received 
input bits. If the received input bit matches with the CPRNG3 
output, then a ‘0’ is decided, and if it matches with the CPRNG4 
output, then a ‘1’ is decided. An ambiguity may arise at the 
receiver if the two CPRNGs (CPRNG3 and CPRNG4) are in 
the same state. In order to avoid this situation, the quantized 
values of both CPRNG3 and CPRNG4 are checked at the 
transmitter, and if found equal, both CPRNGs iterate once more 
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to the next states until they reach distinct states. Thus, at the 
receiver, if for received ‘B’ message bits, both CPRNGs have the 
same value, the generators will be incremented to the next states 
until they reach distinct states. This avoids ambiguity at the 
receiver and helps in making the correct decision. 

III. Chaotic-State-Modulated Encryption 

In order to avoid bandwidth expansion, which may be 
desirable in many applications where limited bandwidth is 
available, the quantizer chosen for CPRNG3 and CPRNG4 can 
be of one bit, while the quantizer used for CPRNG1 and 
CPRNG2 can be of ‘B’ bits. Thus, the proposed chaotic-state-
modulated encryption technique can be applied to the spread 
spectrum communication as well as encryption of the signal. The 
above state-modulated encryption algorithm was applied on the 
Lena image of size 128 × 128. The values of k1 and k2 were 
chosen to be 1, and ‘B’ was taken as 4 for CPRNG1 and 
CPRNG2. The chaotic number generators CPRNG1 and 
CPRNG2 were implemented using (5), and CPRNG3 and 
CPRNG4 were implemented using (6). The encryption scheme 
simulated used equal values of e and d, given in (4), which is 
decided by the initial seed/state (si) of the four CPRNGs. The 
initial seeds are floating-point numbers represented by 32 bits in 
the range of 0 to 1. Since encryption was to be performed, a one-
bit quantizer was used for CPRNG3 and CPRNG4. The 
original/recovered and encrypted images are shown in Figs. 2(a) 
and 2(b), respectively. The histogram of the encrypted image is 
found to be more flat when compared to the original image, as 
 

 

Fig. 2. (a) original image, (b) encrypted image, (c) histogram of
the original image, and (d) histogram of the encrypted
image. 
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shown in Figs. 2(c) and 2(d). The standard deviation of pixel 
intensity for the encrypted image was found to be 11.13 
compared to 52.75 of the original image, which shows a fairly 
uniform distribution of pixel intensities. To extract the original 
message from the encrypted data, the receiver must have 
information about the initial seed values, the chaos generating 
functions used for the generation of pseudo random numbers, 
and the quantizing thresholds used. 

IV. Conclusion 

Since different generating functions are used and the states 
are also modulated, it is difficult to get information about the 
attractor and the initial seed. The encryption scheme proposed 
is signal dependent, and the outcomes of the generators are not 
consecutive states. Therefore, even if a long sequence of data is 
decrypted, and the state sequences are obtained, it will not be 
the same for a different input signal. Also, for continuous 
strings of 1’s or 0’s, the number generated was found to be 
random. Complexity of the system can be increased by using 
all four CPRNGs with different generating equations. Since 
data transmission over a TCP/IP link is error free, the proposed 
scheme has no problem as long as the data is received correctly 
in sequence as it was transmitted. 
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