

MTF 와 SFR의 비교

글/(주)지엔오 최유화 이사

MTF란?

Modulation Transfer Function의 약어로 현재까지 가장 과학적이고 객관적인 렌즈 및 카메라 모듈의 성능 측정방법으로 알려져 있다. 일반적으로 렌즈 및 카메라모듈의 성능을 알기 위해사람들이 만들어 낸 표준적 타겟으로 해상력 차트라는 것이 있는데 이는 완전 흰색(반사율 100%)의 배경에 완전히 검은 줄(반사율 0%)이 일정한 간격으로 그어져 있는 것이다. 일정한 간격은 흰 줄과 검은 줄이 한 쌍을 이뤘을 때 1mm 안에 몇 쌍이들어가느냐에 따라 1쌍이 들어가면 1lp/mm가 되고 10개의 쌍이들어가면, 즉 각각의 흰색 줄 또는 검은색 줄이 0.05mm의 두께로 빼곡히 20개가 들어가면 10lp/mm가 된다. (여기서 lp/mm는 Line Pair per milimeter이다.) 이렇게 하면 이 해상력 차트의 종류는 무수히 많을 수 있지만 일반적으로 600lp/mm를 넘어가는 경우는 없다. 인간의 나안으로 구분할 수 있는 lp의 한계는 통상 10lp/mm라고 한다.

한편, 차트 또는 타겟에 선이 그어져 있는 모양에 따라 차트의 중심에서 자전거 바퀴살 모양으로 선이 그어지는 것이 있고 원 형으로 수렴하는 모양처럼 그어진 것이 있다. 전자는 렌즈의 중 심축 또는 광축에서 봤을 때 어떤 형체를 형성하는 수평적인 요 소가 되고 후자는 원형의 수직적인 요소가 된다.

MTF에서 이런 해상력 차트 이야기를 하는 것은 이걸 알아야

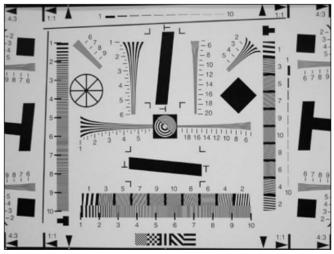


그림 1. PIMA / ISO 12233

MTF를 이해할 수 있기 때문이다. MTF는 이런 차트를 프로젝터와 렌즈 및 카메라모듈을 통해 투사해서 그 차트(원본)을 렌즈 및 카메라모듈이 재생시키는 정도를 보고 렌즈 및 카메라모듈의 성능을 판단하는 것이다. 이때 재생의 정도라 함은 원본이 가지는 100% 콘트라스트에 대하여 투사된 결과물(투사본)이 가지는 콘트라스트의 정도가 된다.

그런데 한가지 더 분명히 할 것은 해상력(Resolution)과 선예도 (Sharpness), 콘트라스트(Contrast)의 개념이다. 해상력 (Resolution)은 예를 들어 100lp/mm를 얼마나 정확하게 재현해 내는가, 실전적 예를 들면 필름에 아주 작게 기록되는 어떤복잡한 기계장치의 디테일을 얼마나 잘 살려 내는가 하는 것이된다. 선예도(Sharpness)는 어떤 형체가 있을 때 그 형체를 구분하게 해주는 수단은 선의 형태를 띠게 되는데 이 때 그 경계를나타내는 수단으로서의 선이얼마나 정확하고 선명하게 재현되는가가된다.

반면, 콘트라스트는 완전 검은색과 완전 흰색사이에 존재하는 회색의 종류를 얼마나 많이 보여주는 가이다. 즉, 흑백사진에서 흔히 말하는 계조의 표현능력이다. 표현해 내는 회색의 수가 많 으면 콘트라스트가 높은 것이고 적으면 낮은 것이다. 그런데 역 설적이지만 일반적으로 콘트라스트 얘기를 할 때는 오히려 적으 면 콘트라스트가 높아 보인다고 얘기를 하는 경우도 있다.

다시 말하면, MTF는 렌즈 및 카메라모듈을 통해 투사된 해상력 차트가 본래의 해상력 차트와 비교해서 본래의 원본을 얼마나 재현해 냈는가를 %로 표현한 것이라고 할 수 있다. 완벽하게 재현했으면 100%가 되고 하나도 재현하지 못했으면 0%가 될 것이다. 그런데 앞서본 lp/mm에 따라 그 재현도는 달라지게 된다. llp/mm, 즉 1mm 안에 0.5mm의 두께로 하나의 검은줄과 하나의 흰줄이 있는 것을 투사했다면 일회용 카메라라고 할지라도 그 검은줄과 흰줄을 선명하게 재현해 낼 것이다. 이는 렌즈가 아주 정밀한 재현력이 없어도 상이 웬만큼 크기 때문에 그 콘트라스트에 의해서도 판단이 되기 때문이다. 따라서 보통 10lp/mm 까지의 테스트는 주로 콘트라스트에 대한 정보를 주게 된다.

하지만 50lp/mm, 즉 1mm안에 50개의 흰줄과 50개의 검은줄을 100등분하여 넣어둔 차트를 투사했다면 과연 그것을 100개의 줄 그대로 재현해 낼 수 있는 렌즈 및 카메라모듈이 얼마인지 판단하는 것은 쉬운 일이 아니다. 즉, MTF테스트시 가장 처음 얻을 수 있는 그래프는 lp/mm를 1부터 차츰 늘려가서 어느 수준까지(예를 들면 100lp/mm) 투사한 결과가 되는데, 이렇게 보면 1lp/mm에서는 어느 렌즈나 좋은 MTF비율이 나올 것이지만(보통 95% 이상) 40lp/mm이나 60lp/mm로 가면 갈수록 원본의 재현율은 낮아질 것이다. 즉, 그래프의 x축을 lp/mm, y축을 MTF로 했을 때 y는 x와 반비례하게 되고 결국 어느 순간에는 (1000lp/mm정도) MTF가 0이 되는 것이다.

여기에서 알 수 있는 것은 lp/mm가 높아질수록 어떤 사물의 디

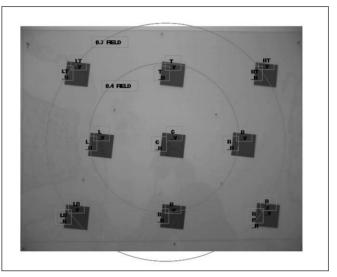


그림 3. SFR 측정위치

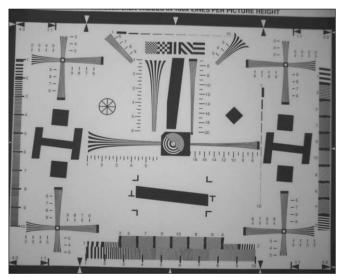
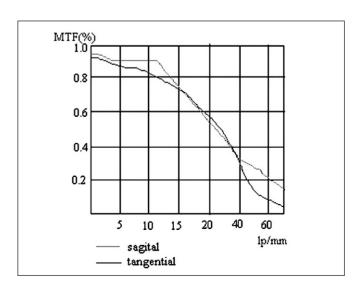
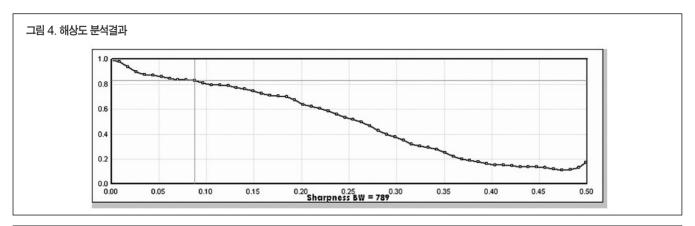
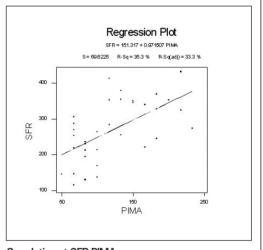




그림 2. PIMA 측정위치(C,LT,RT,LB,RB)

테일이 정교해진다는 것인데 따라서. lp/mm단위가 높은 경우 가 된다. 즉 필름원판을 아주 크게 확대(35mm원판의 경우 최소 의 테스트(예를 들어 40lp/mm 또는 60lp/mm 등)는 그 렌즈 및 카메라모듈의 해상력 또는 정밀한 묘사력 정도를 보여주는 자료


12R이상으로의 확대)할 요량이면 유의미한 정보가 될 수 있다. 인간이 형체를 구분할 수 있는 최소한의 콘트라스트가 20%라고

< PIMA vs SFR 상관관계 분석 >

그림 5. PIMA/SFR 비교 data(샘플1)

NO			SFR 모듈 0.7Field	1				PIMA	Α		
NO	평			내-최소		중심			주변		
	Н	V	Н	V	MAX	중앙	좌상	우상	좌하	우하	편차
1	530	618	202	284	284	617	500	467	583	500	117
2	542	653	181	213	213	650	550	517	550	483	83
3	556	623	279	414	414	617	600	517	500	483	117
5	605	737	104	115	115	633	517	483	550	550	67
6	493	586	152	169	169	633	417	400	500	500	100
7	532	636	236	157	236	617	517	483	483	467	83
8	530	622	297	328	328	633	533	417	550	383	183
9	560	653	377	433	433	650	617	500	483	400	217
10	491	585	124	145	145	617	467	467	500	467	50
11	528	618	252	355	355	633	550	467	550	417	133
12	631	695	380	30	380	617	583	483	583	467	133
13	627	721	99	130	130	650	483	517	567	533	83
14	529	673	124	137	137	650	433	500	467	533	100
15	599	671	351	334	351	617	567	517	500	417	150
16	596	673	336	341	341	633	533	383	517	433	167
17	563	627	325	324	325	617	533	350	567	417	217
18	635	178	354	281	354	617	550	450	567	517	117
19	597	707	105	231	231	617	533	483	517	450	83
20	570	675	184	270	270	617	517	450	500	450	67
21	595	687	346	345	346	650	550	500	517	417	150
22	583	671	370	644	370	617	550	367	550	483	183
23	558	690	142	307	307	617	517	483	467	450	67
24	558	666	141	194	494	650	483	483	533	550	83
25	500	612	128	287	287	650	517	467	450	467	67
26	534	626	225	246	246	617	467	400	583	483	183
27	546	617	353	326	353	667	533	350	550	400	200
28	554	638	251	254	254	650	517	483	500	467	67
29	549	658	112	146	146	633	517	450	483	500	67
30	5511	587	229	274	274	633	217	350	583	417	233
L#1	734	806	214	186	214	617	600	600	500	583	100
L#2	730	824	219	214	219	650	600	600	567	633	67
L#3	701	736	199	221	221	650	567	567	400	483	167
L#4	737	827	255	217	255	633	633	617	583	500	133
L#5	649	733	264	191	264	650	567	500	483	533	100

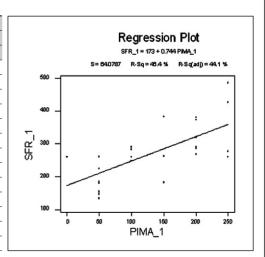
Correlations : SFR.PIMA Pearson correlation of SFR and PIMA= 0.594

하니까 MTF그래프에서의 재생율 곡선이 20% 아래로 내려가면 곤란해진다는 결론이 되는데 lp/mm단위를 높일수록 특히 주변 부에서는 20%이하로 내려가는 렌즈 및 카메라모듈이 발생할 수 있다. 그러나 PIMA 차트의 화상측정을 통한 렌즈 및 카메라모듈의 해상력 평가는 검사자별 객관적인 결과를 도출하기 어렵고 재현성에도 한계가 있다는 단점이 있다. 따라서 렌즈 및 카메라모듈의 해상력 측정방법에 있어 객관성을 높이고 수치적으로 확인할 수 있는 방법을 모색할 필요가 있다.

먼저 PIMA 해상도차트를 이용하여 측정을 하는 경우 측정위치를 결정해야 하는 현실적인 문제가 있다. 테스트 위치를 무한정으로 선정할 수 없기 때문에 상의 위치를 결정해야 한다. 여기서는 측정을 상의 중심과 주변 4부분으로 지정하여 측정했다. 보통의 MTF는 5lp/mm, 10lp/mm, 20lp/mm, 그리고 40lp/mm 정도에서만 MTF를 측정하게 된다. 스웨덴의 Hasselblad Lab에서 실시하는 MTF테스트의 경우 10, 20, 40을 표준으로 하고있다. 보통의 경우 렌즈 및 카메라모듈의 해상도는 중심보다는 주변의 의미가 크기 때문에 중심부와 주변부의 해상력 차이를

보여주기 위해 측정지점은 렌즈 및 카메라모듈의 정중앙부(또는 광축이 될 것이다) 에서 일정한 간격을 두고 주변부까지 측정한 것이다.

- SFR 해상도 측정은 차트가 복잡하지 않다.
- 차트의 경사각 변동에 따른 오차의 발생이 심하게 왜곡되지 않는다.
- 렌즈 및 카메라 해상도의 변동에 따라 차트의 크기에 영향을 받지 않는다.


동일 샘플을 사용하여 그림 3의 각 측정위치에서 SFR용 차트를 측정한 후 SFR 프로그램을 이용한 해상도 분석결과는 그림 4와 같다

결론적으로, PIMA 차트를 통한 주변 해상도 검토시 측정인별 차이가 발생하며 객관적인 결과 도츨이 어려운 단점이 있다. PIMA차트 주변 해상력 편차와 SFR 측정결과 사이에 상관관계가 존재하며 SFR 프로그램을 이용하는 경우 수치화 가능성이 크다는 것을 알 수 있다

< PIMA vs SFR 상관관계 분석 >

그림 6. PIMA/SFR 비교 data(샘플2)

			PII	MA		SFR(0,7Field)					
NO	중심			주변			äО	균		최대-최소	7
	С	LU	RU	LB	RB	편차	Н	V	Н	V	MAX
1	650	550	600	400	600	200	544	638	120	287	287
2	650	600	600	550	600	50	757	779	31	134	134
3	700	550	600	600	600	50	596	696	185	172	185
4	700	600	600	550	500	100	737	765	229	259	259
5	700	500	650	400	600	250	585	692	427	421	427
6	700	600	600	550	600	50	592	694	103	224	224
7	700	400	500	500	550	150	544	635	140	182	182
8	700	600	600	600	600	0	568	664	217	259	259
9	700	600	600	550	550	50	620	723	140	181	181
10	700	550	550	600	600	50	644	738	147	77	147
11	650	600	650	400	500	250	553	572	217	277	277
12	700	650	650	400	400	250	437	663	373	486	486
13	700	600	550	600	600	50	670	736	154	143	154
14	700	500	550	450	550	100	571	660	283	133	283
15	700	650	650	500	500	150	685	751	262	224	262
16	600	600	600	500	500	100	579	709	135	248	248
17	700	600	500	500	400	200	572	638	290	248	290
18	700	500	550	550	600	100	620	719	259	199	259
19	700	600	500	550	400	200	598	675	268	198	268
20	700	500	600	400	400	200	541	611	234	319	319
21	650	500	500	400	300	200	543	625	232	381	381
22	700	500	600	400	400	200	545	654	368	373	373
23	700	400	400	400	500	100	491	569	290	201	290
24	700	600	600	550	600	50	767	800	177	261	261
25	700	600	600	550	600	50	797	800	177	261	261
26	700	650	600	500	600	150	679	723	257	383	383

Correlations: SFR_1. PIMA_1
Pearson correlation of SFR_1 and PIMA_1 = 0.681

- MTF는 두가지 패턴의 무늬를 가진 해상력 차트를 lp/mm 별 SFR의 경우 수치화가 가능하여 측정결과에 따른 오차 범위를 로 투사해서 원본과 투사본의 콘트라스트 차이를 보고 재생 현저하게 줄일 수 있는 장점이 있다. 정도를 %로 나타낸 것인 반면, SFR은 독립된 해상도 측정 차 트를 통하여 그 비율을 계산할 수 있다.

도표 1. SFR 측정결과(샘플1)

		nter				0.7F	IELD				됨	균	최대	최소
#	Ü	III	L	.В	A	В	F	IT	L	.T	0.7F	IELD	0.7F	FIELD
	Ξ	ν	Н	ν	Н	V	Н	ν	Н	٧	Н	V	Н	V
#1	821	849	627	746	425	664	4 62	462	617	708	630.3	617.6	202.0	284.0
#2	839	880	614	708	443	662	487	568	624	776	542.0	663.3	181.0	213.0
#3	822	861	605	554	439	434	462	6 6 7	718	848	656.0	623.3	279.0	414.0
#6	814	864	602	707	548	673	619	778	652	788	605.3	736.6	104.0	115.0
#6	799	874	591	6 5 4	455	611	439	485	488	592	493.3	685.6	162.0	169.0
#7	747	798	585	695	413	673	482	560	649	717	632.3	636.3	236.0	157.0
#8	828	898	636	694	381	476	423	515	678	804	629.6	622.3	297.0	328.0
#9	825	869	610	672	386	446	479	713	763	879	659.5	662.6	377.0	433.0
#10	786	826	564	644	440	564	443	499	517	634	491.0	585.3	124.0	145.0
#11	820	866	592	646	413	471	443	529	665	826	628.3	618.0	252.0	355.0
#12	809	836	724	760	455	633	508	634	835	863	630.5	695.0	380.0	330.0
#13	830	905	686	779	587	687	605	649	628	767	626.5	720.5	99.0	130.0
#14	846	910	492	598	557	641	596	716	472	735	529.3	672.6	124.0	137.0
#15	792	838	691	640	430	502	494	704	781	836	599.0	670.6	351.0	334.0
#16	789	837	697	639	430	499	492	712	766	840	696.3	672.6	336.0	341.0
#17	827	884	719	772	397	517	414	448	722	770	563.0	626.8	325.0	324.0
#18	825	885	754	798	4 5 9	617	512	588	813	869	634.5	718.0	354.0	281.0
#19	852	887	678	662	522	693	588	750	627	824	678.8	707.3	105.0	231.0
#20	840	897	616	674	466	667	546	642	650	827	569.5	675.0	184.0	270.0
#21	838	870	691	697	433	516	477	675	779	861	695.0	687.3	346.0	345.0
#22	866	906	736	782	423	599	402	480	772	824	683.0	671.3	370.0	344.0
#23	896	908	562	615	478	544	672	751	620	851	558.0	690.3	142.0	307.0
#24	876	900	638	719	497	621	499	564	599	768	658.3	665.6	141.0	194.0
#25	834	909	487	567	422	479	540	634	550	766	499.8	611.6	128.0	287.0
#26	882	913	650	738	444	595	425	492	616	679	533.8	626.0	225.0	246.0
#27	840	847	706	771	365	516	396	445	718	736	546.3	617.0	353.0	326.0
#28	821	8 64	636	665	427	540	476	554	678	794	663.8	638.3	251.0	254.0
#29	817	862	616	665	504	605	530	611	544	751	548.5	658.0	112.0	146.0
#30	833	871	642	698	417	497	413	440	571	714	610.8	587.3	229.0	274.0
L#1	848	8 59	774	792	625	688	696	874	839	868	733.5	805.5	214.0	186.0
L#2	847	865	779	823	618	688	685	884	837	902	729.8	824.3	219.0	214.0
L#3	844	869	730	6 5 4	601	623	673	821	800	844	701.0	735.5	199.0	221.0
L#4	838	8 5 6	817	841	602	686	670	903	857	877	736.5	826.8	255.0	217.0
L#5	817	826	740	761	512	644	667	692	776	835	648.8	733.0	264.0	191.0

도표 2. SFR 측정결과(샘플2)

	Cou	otor				0.8F	IELD				평	균	최대-최소	
NO	Cei	Center		В	R	В	F	RT	L	T	0.7F	IELD	0.7F	IELD
	Н	V	Ι	V	Н	V	Н	٧	Τ	٧	Н	>	Ι	V
1	885	897	491	487	502	598	611	691	571	774	543.8	637.5	120.0	287.0
2	921	885	744	704	742	779	773	794	768	838	756.8	778.8	31.0	134.0
3	903	913	648	667	491	731	569	607	676	779	596.0	696.0	185.0	172.0
4	924	905	679	625	608	672	823	878	837	884	736.8	764.8	229.0	259.0
5	924	898	406	437	611	713	833	858	489	759	584.8	691.8	427.0	421.0
6	859	872	549	590	586	663	652	708	581	814	592.0	693.8	103.0	224.0
7	941	905	586	569	587	751	555	607	447	614	543.8	635.3	140.0	182.0
8	876	876	681	736	513	715	464	477	614	726	568.0	663.5	217.0	259.0
9	927	924	707	641	626	729	581	701	567	822	620.3	723.3	140.0	181.0
10	891	897	632	697	681	774	704	726	557	756	643.5	738.3	147.0	77.0
11	667	656	463	412	503	506	680	680	565	689	552.8	571.8	217.0	277.0
12	944	930	537	430	389	471	61	833	762	916	437.3	662.5	701.0	486.0
13	883	884	754	762	674	781	650	638	600	763	669.5	736.0	154.0	143.0
14	927	915	501	592	644	725	710	671	427	650	570.5	659.5	283.0	133.0
15	928	910	718	643	527	688	705	807	789	867	684.8	751.3	262.0	224.0
16	935	913	642	605	507	693	546	686	621	853	579.0	709.3	135.0	248.0
17	905	909	599	571	437	561	524	610	727	809	571.8	637.8	290.0	248.0
18	925	912	548	612	676	811	757	751	498	703	619.8	719.3	259.0	199.0
19	931	894	674	602	468	641	512	658	736	800	597.5	675.3	268.0	198.0
20	928	923	624	489	414	486	479	663	648	805	541.3	610.8	234.0	319.0
21	932	922	627	487	415	484	483	664	647	865	543.0	625.0	232.0	381.0
22	932	935	413	430	517	621	781	803	470	763	545.3	654.3	368.0	373.0
23	889	875	408	497	624	698	598	574	334	508	491.0	569.3	290.0	201.0
24	884	887	655	635	703	801	877	896	856	918	772.8	812.5	222.0	283.0
25	903	906	683	642	678	800	855	855	853	903	767.3	800.0	177.0	261.0
26	897	911	523	511	711	730	780	758	773	894	696.8	723.3	257.0	383.0

▶▶▶ 업계기고

도표 3. PIMA 측정결과(샘플1)

NO		20 10	측정	자1					측정	자2					측정	자3					평	균		
INO	С	LT	RT	LB	RB	편차	С	LT	RT	LB	RB	편차	С	LT	RT	LB	RB	편차	C	LT	RT	LB	RB	편차
1	650	500	500	600	550	100	600	450	450	550	450	100	600	550	450	600	500	150	617	500	467	583	500	117
2	650	550	550	600	500	100	600	500	450	500	450	50	700	600	550	550	500	100	650	550	517	550	483	83
3	650	600	550	500	500	100	600	600	500	500	450	150	600	600	500	500	500	100	617	600	517	500	483	117
5	650	550	550	600	600	50	600	500	450	550	550	100	650	500	450	500	500	50	633	517	483	550	550	67
6	700	450	450	550	550	100	600	400	400	450	450	50	600	400	350	500	500	150	633	417	400	500	500	100
7	650	550	500	600	500	100	600	500	450	450	450	50	600	500	500	400	450	100	617	517	483	483	467	83
8	700	600	400	600	450	200	600	500	450	550	350	200	600	500	400	500	350	150	633	533	417	550	383	183
9	700	650	550	550	450	200	600	600	500	450	400	200	650	600	450	450	350	250	650	617	500	483	400	217
10	650	550	500	550	500	50	600	400	400	450	450	50	600	450	500	500	450	50	617	467	467	500	467	50
11	700	600	500	600	450	150	600	550	450	550	400	150	600	500	450	500	400	100	633	550	467	550	417	133
12	650	650	500	650	500	150	600	600	450	550	450	150	600	500	500	550	450	100	617	583	483	583	467	133
13	700	550	550	650	600	100	650	450	500	550	500	100	600	450	500	500	500	50	650	483	517	567	533	83
14	700	500	550	500	600	100	650	350	450	450	500	150	600	450	500	450	500	50	650	433	500	467	533	100
15	600	600	550	550	500	100	650	550	500	500	350	200	600	550	500	450	400	150	617	567	517	500	417	150
16	650	550	500	600	500	100	650	550	350	450	400	200	600	500	300	500	400	200	633	533	383	517	433	167
17	650	550	400	600	500	200	600	550	350	600	350	250	600	500	300	500	400	200	617	533	350	567	417	217
18	650	600	500	650	600	150	600	550	450	550	450	100	600	500	400	500	500	100	617	550	450	567	517	117
19	650	600	550	550	500	100	600	500	450	500	400	100	600	500	450	500	450	50	617	533	483	517	450	83
20	650	550	500	550	500	50	600	500	450	500	450	50	600	500	400	450	400	100	617	517	450	500	450	67
21	650	650	500	550	450	200	650	550	500	500	400	150	650	450	500	500	400	100	650	550	500	517	417	150
22	650	600	400	600	500	200	600	550	350	550	450	200	600	500	350	500	500	150	617	550	367	550	483	183
23	650	550	550	500	500	50	600	500	450	450	450	50	600	500	450	450	400	100	617	517	483	467	450	67
24	700	500	500	600	550	100	600	450	450	500	500	50	650	500	500	500	600	100	650	483	483	533	550	83
25	650	500	500	500	500	0	600	500	450	400	400	100	700	550	450	450	500	100	650	517	467	450	467	67
26	650	500	400	600	500	200	600	400	400	550	450	150	600	500	400	600	500	200	617	467	400	583	483	183
27	700	550	400	600	450	200	600	550	300	550	350	250	700	500	350	500	400	150	667	533	350	550	400	200
28	650	550	500	550	500	50	600	500	450	500	400	100	700	500	500	450	500	50	650	517	483	500	467	67
29	700	550	500	550	550	50	600	500	400	400	450	100	600	500	450	500	500	50	633	517	450	483	500	67
30	650	550	400	600	450	200	600	500	350	550	400	200	650	500	300	600	400	300	633	517	350	583	417	233
L#1	650	650	650	550	600	100	600	550	550	450	550	100	600	600	600	500	600	100	617	600	600	500	583	100
L#2	650	600	600	600	600	0	600	600	600	600	600	0	700	600	600	500	700	200	650	600	600	567	633	67
L#3	650	600	600	450	550	150	600	600	600	400	400	200	700	500	500	350	500	150	650	567	567	400	483	167
L#4	650	650	650	650	650	0	600	600	600	500	450	150	650	650	600	600	400	250	633	633	617	583	500	133
L#5	650	650	550	600	650	100	600	550	450	450	450	100	700	500	500	400	500	100	650	567	500	483	533	100

도표 4. PIMA측정결과(샘플2)

PIMA										
중심			주 변		-034-3107-13-					
С	LT	RT	LB	RB	편 차					
650	550	600	400	600	200					
650	600	600	550	600	50					
700	550	600	600	600	50					
700	600	600	550	500						
700	500	650	400	600	250					
700	600	600	550	600	50					
700	400	500	500	550	150					
700	600	600	600	600	0					
700	600	600	550	550	50					
700	550	550	600	600	50					
650	600	650	400	500	250					
700	650	650	400	400	250					
700	600	550	600	600	50					
700	500	550	450	550	100					
700	650	650	500	500	150					
600	600	600	500	500	100					
700	600	500	500	400	200					
700	500	550	550	600	100					
700	600	500	550	400	200					
700	500	600	400	400	200					
650	500	500	400	300	200					
700	500	600	400	400	200					
700	400	400	400	500	100					
700	650	600	550	600	100					
700	600	600	550	600	50					
700	650	600	500	600	150					