KYUNGPOOK Math. J. 46(2006), 119-130

On Almost Continuity

Erdal Ekici

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey e-mail: eekici@comu.edu.tr

ABSTRACT. A new class of functions is introduced in this paper. This class is called almost δ -precontinuity. This type of functions is seen to be strictly weaker than almost precontinuity. By using δ -preopen sets, many characterizations and properties of the said type of functions are investigated.

1. Introduction

The notion of δ -preopen set was introduced by Raychaudhuri and Mukherjee [20] in 1993. We introduce here a new type of functions strictly weaker than almost continuity. We call this the almost δ -precontinuous functions. We investigate properties of such functions.

Throughout the present paper, spaces mean topological spaces and $f: (X, \tau) \to (Y, \sigma)$ (or simply $f: X \to Y$) denotes a function f of a space (X, τ) into a space (Y, σ) . Let S be a subset of a space X. The closure and the interior of S are denoted by cl(S) and int(S), respectively.

A subset S of a space X is said to be regular open [23] if S = int(cl(S)) and δ -open [24] if for each $x \in S$, there exists a regular open set W such that $x \in W \subset S$.

A subset S of a space X is said to be α -open [13] (resp. semi-open [8], preopen [10], γ -open [7], β -open [1] or semi-preopen [2]) if $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$ (resp. $S \subset \operatorname{cl}(\operatorname{int}(S)), S \subset \operatorname{int}(\operatorname{cl}(S)), S \subset \operatorname{int}(\operatorname{cl}(S)) \cup \operatorname{cl}(\operatorname{int}(S)), S \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S))))$.

The complement of a regular open set is said to be regular closed [23]. The complement of a semiopen set is said to be semiclosed [5]. The intersection of all semiclosed sets containing a subset A of X is called the semi-closure [5] of A and is denoted by s-cl(A). The union of all semiopen sets contained in a subset A of X is called the semi-interior of A and is denoted by s-int(A). A point $x \in X$ is called a δ -cluster (resp. θ -cluster) point of A [24] if $A \cap int(cl(U)) \neq \emptyset$ (resp. $A \cap cl(U) \neq \emptyset$) for each open set U containing x. The set of all δ -cluster (resp. θ -cluster) points of A is called the δ -closure (resp. θ -closure) of A and is denoted by δ -cl(A) (resp. θ -cl(A)). If δ -cl(A) = A (resp. θ -cl(A) = A), then A is said to be δ -closed (resp.

Received October 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 54C10.

Key words and phrases: δ -preopen set, almost continuity.

 θ -closed). The complement of a δ -closed (resp. θ -closed) set is said to be δ -open (resp. θ -open).

A subset S of a topological space X is said to be δ -preopen [20] iff $S \subset \operatorname{int}(\delta \operatorname{cl}(S))$. The complement of a δ -preopen set is called a δ -preclosed set [20]. The union (resp. intersection) of all δ -preopen (resp. δ -preclosed) sets, each contained in (resp. containing) a set S in a topological space X is called the δ -preinterior (resp. δ -preclosure) of S and it is denoted by δ -pint(S) (resp. δ -pcl(S)) [20].

The family of all δ -preopen (resp.regular open, preopen, β -open. α -open, semiopen, δ -open) sets of a space X will be denoted by $\delta PO(X)$ (resp. RO(X), PO(X), $\beta O(X)$, $\alpha O(X)$, SO(X), $\delta O(X)$). The family of all δ -preclosed (resp. regular closed, δ -closed) sets in a space X is denoted by $\delta PC(X)$ (resp. RC(X), $\delta C(X)$). The family of all δ -preopen (resp.regular open, δ -open) sets containing a point $x \in X$ will be denoted by $\delta PO(X, x)$ (resp. RO(X, x), $\delta O(X, x)$).

Lemma 1 (Raychaudhuri and Mukherjee [20]). Let A be a subset of a space X. Then

(1) $\delta - \operatorname{pcl}(X \setminus A) = X \setminus \delta - \operatorname{pint}(A),$

(2) $x \in \delta - pcl(A)$ if and only if $A \cap U \neq \emptyset$ for each $U \in \delta PO(X, x)$,

(3) A is δ -preclosed in X if and only if $A = \delta - pcl(A)$,

(4) $\delta - pcl(A)$ is δ -preclosed in X.

Lemma 2 (Noiri [17], [18]). For a subset of a space Y, the following hold:

(1) $\alpha - \operatorname{cl}(V) = \operatorname{cl}(V)$ for every $V \in \beta O(Y)$.

(2) $p - \operatorname{cl}(F) = \operatorname{cl}(V)$ for every $V \in SO(Y)$.

(3) s - cl(V) = int(cl(V)) for every preopen set V of a space X.

2. Characterizations

Definition 3. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost δ -precontinuous if for each $x \in X$ and each $V \in RO(Y)$ containing f(x), there exists $U \in \delta PO(X)$ containing x such that $f(U) \subset V$.

Definition 4. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be R-map [4] (resp. almost continuous [21], almost α -continuous [16], almost precontinuous [11], δ -continuous [14]) if $f^{-1}(V) \in RO(X)$ (resp. $f^{-1}(V) \in \tau$, $f^{-1}(V) \in \alpha O(X)$, $f^{-1}(V) \in PO(X)$, $f^{-1}(V) \in \delta O(X)$) for every $V \in RO(Y)$.

Remark 5. The following implications hold:

al. contin. \Rightarrow al. α -contin. \Rightarrow al. precontin. \Rightarrow al. δ -precontin.

The converses are not true in general.

Example 6. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $f : X \to X$ be a function defined by f(a) = b, f(b) = a, f(c) = c. Then, f is almost δ -precontinuous but not almost precontinuous.

The other examples can be seen in [11], [16].

Theorem 7. For a function $f: (X, \tau) \to (Y, \sigma)$, the following are equivalent:

- (1) f is almost δ -precontinuous;
- (2) for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \delta PO(X)$ containing x such that $f(U) \subset int(cl(V))$;
- (3) $f^{-1}(F) \in \delta PC(X)$ for every $F \in RC(Y)$;
- (4) $f^{-1}(V) \in \delta PO(X)$ for every $V \in RO(Y)$.
- (5) $f(\delta pcl(A)) \subset \delta cl(f(A))$ for every subset A of X ;
- (6) $\delta \operatorname{pcl}(f^{-1}(B)) \subset f^{-1}(\delta \operatorname{-cl}(B))$ for every subset B of Y;
- (7) $f^{-1}(F) \in \delta PC(X)$ for every δ -closed set F of (Y, σ) ;
- (8) $f^{-1}(V) \in \delta PO(X)$ for every δ -open set V of (Y, σ) ;
- (9) $\delta \operatorname{pcl}(f^{-1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(B))))) \subset f^{-1}(\operatorname{cl}(B))$ for every subset B of Y;
- (10) $\delta \operatorname{pcl}(f^{-1}(\operatorname{cl}(\operatorname{int}(F)))) \subset f^{-1}(F)$ for every closed set F of Y;
- (11) $\delta \operatorname{pcl}(f^{-1}(\operatorname{cl}(V))) \subset f^{-1}(\operatorname{cl}(V))$ for every open set V of Y;
- (12) $f^{-1}(V) \subset \delta pint(f^{-1}(s cl(V)))$ for every open set V of Y;
- (13) $f^{-1}(V) \subset \operatorname{int}(\delta \operatorname{cl}(f^{-1}(s \operatorname{cl}(V))))$ for every open set V of Y;
- (14) $f^{-1}(V) \subset \delta pint(f^{-1}(int(cl(V)))))$ for every open set V of Y;
- (15) $f^{-1}(V) \subset \operatorname{int}(\delta \operatorname{cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(V))))))$ for every open set V of Y;
- (16) $\delta \operatorname{pcl}(f^{-1}(V)) \subset f^{-1}(\operatorname{cl}(V))$ for each $V \in \beta O(Y)$;

(17)
$$\delta - \operatorname{pcl}(f^{-1}(V)) \subset f^{-1}(\operatorname{cl}(V))$$
 for each $V \in SO(Y)$,

- (18) $f^{-1}(V) \subset \delta \operatorname{pint}(f^{-1}(\operatorname{int}(\operatorname{cl}(V))))$ for each $V \in PO(Y)$;
- (19) $\delta \operatorname{pcl}(f^{-1}(V)) \subset f^{-1}(\alpha \operatorname{cl}(V))$ for each $V \in \beta O(Y)$;
- (20) $\delta \operatorname{pcl}(f^{-1}(V)) \subset f^{-1}(p \operatorname{cl}(V))$ for each $V \in SO(Y)$;
- (21) $f^{-1}(V) \subset \delta \operatorname{pint}(f^{-1}(s \operatorname{cl}(V)))$ for each $V \in PO(Y)$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and $V \in \sigma$ containing f(x). We have $\operatorname{int}(\operatorname{cl}(V)) \in RO(Y)$. Since f is almost δ -precontinuous, then there exists $U \in \delta PO(X, x)$ such that $f(U) \subset \operatorname{int}(\operatorname{cl}(V))$.

 $(2) \Rightarrow (1)$. Obvious.

 $(3) \Leftrightarrow (4)$. Obvious.

 $(1) \Rightarrow (4)$. Let $x \in X$ and $V \in RO(Y, f(x))$. Since f is almost δ -precontinuous, then there exists $U_x \in \delta PO(X, x)$ such that $f(U_x) \subset V$. We have $U_x \subset f^{-1}(V)$. Thus, $f^{-1}(V) = \cup U_x \in \delta PO(X)$.

 $(4) \Rightarrow (1)$. Obvious.

(1) \Rightarrow (5). Let A be a subset of X. Since $\delta - \operatorname{cl}(f(A))$ is δ -closed in Y, it is denoted by $\cap \{F_i : F_i \in RC(Y), i \in I\}$, where I is an index set. By (1) \Leftrightarrow (3), we have $A \subset f^{-1}(\delta - \operatorname{cl}(f(A))) = \cap \{f^{-1}(F_i) : i \in I\} \in \delta PC(X)$ and hence $\delta - \operatorname{pcl}(A) \subset f^{-1}(\delta - \operatorname{cl}(f(A)))$. Therefore, we obtain $f(\delta - \operatorname{pcl}(A)) \subset \delta - \operatorname{cl}(f(A))$.

 $(5) \Rightarrow (6)$. Let *B* be a subset of *Y*. We have $f(\delta - \operatorname{pcl}(f^{-1}(B))) \subset \delta - \operatorname{cl}(f(f^{-1}(B))) \subset \delta - \operatorname{cl}(B)$ and hence $\delta - \operatorname{pcl}(f^{-1}(B)) \subset f^{-1}(\delta - \operatorname{cl}(B))$.

(6)⇒(7). Let F be any δ -closed set of (Y, σ) . We have $\delta - \operatorname{pcl}(f^{-1}(F)) \subset f^{-1}(\delta - \operatorname{cl}(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is δ -preclosed in (X, τ) .

 $(7) \Rightarrow (8)$. Let V be any δ -open set of (Y, σ) . We have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \in \delta PO(X)$ and hence $f^{-1}(V) \in \delta PO(X)$.

(8) \Rightarrow (1). Let V be any regular open set of (Y, σ) . Since V is δ -open in (Y, σ) , $f^{-1}(V) \in \delta PO(X)$ and hence, by (1) \Leftrightarrow (4), f is almost δ -precontinuous.

(1)⇒(9). Let *B* be any subset of *Y*. Assume that $x \in X \setminus f^{-1}(cl(B))$. Then $f(x) \in Y \setminus cl(B)$ and there exists an open set *V* containing f(x) such that $V \cap B = \emptyset$; hence $int(cl(V)) \cap cl(int(cl(B))) = \emptyset$. Since *f* is almost δ -precontinuous, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset int(cl(V))$. Therefore, we have $U \cap f^{-1}(cl(int(cl(B)))) = \emptyset$ and hence $x \in X \setminus \delta - pcl(f^{-1}(cl(int(cl(B)))))$. Thus we obtain $\delta - pcl(f^{-1}(cl(int(cl(B))))) \subset f^{-1}(cl(B))$.

 $(9) \Rightarrow (10)$. Let F be any closed set of Y. Then we have

$$\delta - \operatorname{pcl}(f^{-1}(\operatorname{cl}(\operatorname{int}(F)))) = \delta - \operatorname{pcl}(f^{-1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(F)))))) \\ \subset f^{-1}(\operatorname{cl}(F)) = f^{-1}(F).$$

 $(10) \Rightarrow (11)$. For any open set V of Y, cl(V) is regular closed in Y and we have

$$\delta - \operatorname{pcl}(f^{-1}(\operatorname{cl}(V)) = \delta - \operatorname{pcl}(f^{-1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(V))))) \subset f^{-1}(\operatorname{cl}(V)).$$

 $(11) \Rightarrow (12)$. Let V be any open set of Y. Then $Y \setminus cl(V)$ is open in Y and by using Lemma 2 we have

$$\begin{aligned} X \setminus \delta - \operatorname{pint}(f^{-1}(s - \operatorname{cl}(V))) \\ &= \delta - \operatorname{pcl}(f^{-1}(Y \setminus \operatorname{int}(\operatorname{cl}(V)))) \subset f^{-1}(\operatorname{cl}(Y \setminus \operatorname{cl}(V))) \subset X \setminus f^{-1}(V). \end{aligned}$$

Therefore, we obtain $f^{-1}(V) \subset \delta - pint(f^{-1}(s - cl(V)))$.

 $(12) \Rightarrow (13)$. Let V be any open set of Y. We obtain $f^{-1}(V) \subset \delta - pint(f^{-1}(s - cl(V))) \subset int(\delta - cl(f^{-1}(s - cl(V))))$.

 $(13)\Rightarrow(1).$ Let x be any point of X and V any open set of Y containing f(x). Then $x \in f^{-1}(\operatorname{int}(\operatorname{cl}(V))) \subset \operatorname{int}(\delta - \operatorname{cl}(f^{-1}(s - \operatorname{cl}(\operatorname{int}(\operatorname{cl}(V)))))) = \operatorname{int}(\delta - \operatorname{cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(V))))))$. Thus, $f^{-1}(\operatorname{int}(\operatorname{cl}(V))) \in \delta PO(X)$. Take $U = f^{-1}(\operatorname{int}(\operatorname{cl}(V)))$. We obtain $x \in U$ and $f(U) \subset \operatorname{int}(\operatorname{cl}(V))$. Therefore, f is almost δ -precontinuous. (12) \Leftrightarrow (14) and (13) \Leftrightarrow (15). Obvious.

(1) \Rightarrow (16). Let V be any β -open set of Y. It follows from [2, Theorem 2.4] that cl(V) is regular closed in Y. Since f is almost δ -precontinuous, by (1) \Leftrightarrow (3), $f^{-1}(cl(V))$ is δ -preclosed in X. Therefore, we obtain $\delta - pcl(f^{-1}(V)) \subset f^{-1}(cl(V))$.

(16) \Rightarrow (17). This is obvious since $SO(Y) \subset \beta O(Y)$.

 $(17) \Rightarrow (1)$. Let F be any regular closed set of Y. Then F is semi-open in Y and hence $\delta - \operatorname{pcl}(f^{-1}(F)) \subset f^{-1}(\operatorname{cl}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is δ -preclosed. Therefore, by $(1) \Leftrightarrow (3)$, f is almost δ -precontinuous.

 $(1) \Rightarrow (18)$. Let V be any preopen set of Y. Then $V \subset \operatorname{int}(\operatorname{cl}(V))$ and $\operatorname{int}(\operatorname{cl}(V))$ is regular open in Y. Since f is almost δ -precontinuous, by $(1) \Leftrightarrow (4)$, $f^{-1}(\operatorname{int}(\operatorname{cl}(V)))$ is δ -preopen in X and hence we obtain that $f^{-1}(V) \subset f^{-1}(\operatorname{int}(\operatorname{cl}(V))) \subset \delta - \operatorname{pint}(f^{-1}(\operatorname{int}(\operatorname{cl}(V))))$.

 $(18)\Rightarrow(1)$. Let V be any regular open set of Y. Then V is preopen and $f^{-1}(V) \subset \delta - \text{pint}(f^{-1}(\text{int}(\text{cl}(V)))) = \delta - \text{pint}(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is δ -preopen in X and hence, by $(1)\Leftrightarrow(4)$, f is almost δ -precontinuous.

 $(16) \Leftrightarrow (19), (17) \Leftrightarrow (20), (18) \Leftrightarrow (21).$ Obvious.

Lemma 8 (Raychaudhuri and Mukherjee [20]). A set S in X is δ -preopen if and only if $S \cap G \in \delta PO(X)$ for every δ -open set G of X.

Lemma 9 (Raychaudhuri and Mukherjee [20]). Let A and X_0 be subsets of a space (X, τ) . If $A \in \delta PO(X)$ and $X_0 \in \delta O(X)$, then $A \cap X_0 \in \delta PO(X_0)$.

Theorem 10. If $f : (X, \tau) \to (Y, \sigma)$ is almost δ -precontinuous and A is δ -open in (X, τ) , then the restriction $f \mid_A : (A, \tau_A) \to (Y, \sigma)$ is almost δ -precontinuous.

Proof. Let V be any regular open set of Y. By Theorem 7, we have $f^{-1}(V) \in \delta PO(X)$ and hence $(f \mid_A)^{-1}(V) = f^{-1}(V) \cap A \in \delta PO(A)$ by Lemma 9. Thus, it follows that $f \mid_A$ is almost δ -precontinuous.

Lemma 11 (Raychaudhuri and Mukherjee [20]). Let A and X_0 be subsets of a space (X, τ) . If $A \in \delta PO(X_0)$ and $X_0 \in \delta O(X)$, then $A \in \delta PO(X)$.

Theorem 12. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $\{U_i : i \in I\}$ a cover of X by δ -open sets of (X, τ) . If $f \mid_{U_i} : (U_i, \tau_{U_i}) \to (Y, \sigma)$ is almost δ -precontinuous for each $i \in I$, then f is almost δ -precontinuous.

Proof. Let V be any regular open set of (Y, σ) . Then, we have

$$f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{ U_i \cap f^{-1}(V) : i \in I \} = \bigcup \{ (f \mid_{U_i})^{-1}(V) : i \in I \}.$$

Since $f \mid_{U_i}$ is almost δ -precontinuous, $(f \mid_{U_i})^{-1}(V) \in \delta PO(U_i)$ for each $i \in I$. By Lemma 11, for each $i \in I$, $(f \mid_{U_i})^{-1}(V)$ is δ -preopen in X and hence $f^{-1}(V)$ is δ -preopen in X. Therefore, f is almost δ -precontinuous.

Theorem 13. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ the graph function defined by g(x) = (x, f(x)) for every $x \in X$. Then g is almost δ -precontinuous if and only if f is almost δ -precontinuous.

Proof. (\Rightarrow). Let $x \in X$ and $V \in RO(Y)$ containing f(x). Then, we have $g(x) = (x, f(x)) \in X \times V \in RO(X \times Y)$. Since g is almost δ -precontinuous, there exists a δ -preopen set U of X containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$ and hence f is almost δ -precontinuous.

(\Leftarrow). Let $x \in X$ and W be a regular open set of $X \times Y$ containing g(x). There exist $U_1 \in RO(X)$ and $V \in RO(Y)$ such that $(x, f(x)) \in U_1 \times V \subset W$. Since f is almost δ -precontinuous, there exists $U_2 \in \delta PO(X)$ such that $x \in U_2$ and $f(U_2) \subset V$. Put $U = U_1 \cap U_2$, then we obtain $x \in U \in \delta PO(X)$ and $g(U) \subset U_1 \times V \subset W$. This shows that g is almost δ -precontinuous. \Box

Definition 14. The δ -prefrontier of a subset A of X, denoted by $\delta - pfr(A)$, is defined by $\delta - pfr(A) = \delta - pcl(A) \cap \delta - pcl(X \setminus A) = \delta - pcl(A) \setminus \delta - pint(A)$.

Theorem 15. The set of all points x of X at which a function $f : X \to Y$ is not almost δ -precontinuous is identical with the union of the δ -prefrontiers of the inverse images of regular open sets containing f(x).

Proof. Let x be a point of X at which f is not almost δ -precontinuous Then, there exists a regular open set V of Y containing f(x) such that $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in \delta PO(X, x)$. Therefore, we have $x \in \delta - pcl(X \setminus f^{-1}(V)) = X \setminus \delta - pint(f^{-1}(V))$ and $x \in f^{-1}(V)$. Thus, we obtain $x \in \delta - pfr(f^{-1}(V))$.

Conversely, suppose that f is almost δ -precontinuous at $x \in X$ and let V be a regular open set containing f(x). Then there exists $U \in \delta PO(X, x)$ such that $U \subset f^{-1}(V)$; hence $x \in \delta - pint(f^{-1}(V))$. Therefore, it follows that $x \in X \setminus \delta - pfr(f^{-1}(V))$. This completes the proof. \Box

Definition 16. A space X is said to be δ -pre-T₂ [6] if for any distinct points x, y of X, there exist disjoint δ -preopen sets U, V of X such that $x \in U$ and $y \in V$.

Definition 17. A function $f: X \to Y$ is said to be weakly δ -precontinuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta PO(X, x)$ such that $f(U) \subset cl(V)$.

Theorem 18. If for each pair of distinct points x_1 and x_2 in a space X, there exists a function f of X into a Hausdorff space Y such that

- $(1) f(x_1) \neq f(x_2),$
- (2) f is weakly δ -precontinuous at x_1 and
- (3) almost δ -precontinuous at x_2 ,
- then X is δ -pre-T₂.

Proof. Since Y is Hausdorff, there exist open sets V_1 and V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$; hence $\operatorname{cl}(V_1) \cap \operatorname{int}(\operatorname{cl}(V_2)) = \emptyset$. Since f is weakly δ -precontinuous at x_1 , there exists $U_1 \in \delta PO(X, x_1)$ such that $f(U_1) \subset \operatorname{cl}(V_1)$. Since f is almost δ -precontinuous at x_2 , there exists $U_2 \in \delta PO(X, x_2)$ such that $f(U_2) \subset \operatorname{int}(\operatorname{cl}(V_2))$. Therefore, we obtain $U_1 \cap U_2 = \emptyset$. This shows that X is δ -pre-T₂.

Let $f : X \to Y$ be a function. The subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 19. A function $f : X \to Y$ has a (δ_p, r) -graph if for each $(x, y) \in X \times Y \setminus G(f)$, there exist $U \in \delta PO(X, x)$ and a regular open set V of Y containing

y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 20. A function $f : X \to Y$ has a (δ_p, r) -graph if and only if for each $(x, y) \in X \times Y$ such that $y \neq f(x)$, there exist a δ -preopen set U and a regular open set V containing x and y, respectively, such that $f(U) \cap V = \emptyset$.

Theorem 21. If $f : X \to Y$ is an almost δ -precontinuous function and Y is Hausdorff, then f has a (δ_p, r) -graph.

Proof. Let $(x, y) \in X \times Y$ such that $y \neq f(x)$. Then there exist open sets V and W such that $y \in V$, $f(x) \in W$ and $V \cap W = \emptyset$; hence $\operatorname{int}(\operatorname{cl}(V)) \cap \operatorname{int}(\operatorname{cl}(W)) = \emptyset$. Since f is almost δ -precontinuous, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset \operatorname{int}(\operatorname{cl}(W))$. This implies that $f(U) \cap \operatorname{int}(\operatorname{cl}(V)) = \emptyset$. Therefore, f has a (δ_p, r) -graph. \Box

Definition 22. A space X is said to be δ -pre-compact [6] if every δ -preopen cover of X has a finite subcover.

Theorem 23. If $f : (X, \tau) \to (Y, \sigma)$ has a (δ_p, r) -graph, then f(K) is δ -closed in (Y, σ) for each subset K which is δ -pre-compact relative to (X, τ) .

Proof. Suppose that $y \notin f(K)$. Then $(x, y) \notin G(f)$ for each $x \in K$. Since G(f) is (δ_p, r) -graph, there exist $U_x \in \delta PO(X)$ containing x and a regular open set V_x of Y containing y such that $f(U_x) \cap V_x = \emptyset$. The family $\{U_x : x \in K\}$ is a cover of K by δ -preopen sets. Since K is δ -pre-compact relative to (X, τ) , there exists a finite subset K_0 of K such that $K \subset \cup \{U_x : x \in K_0\}$. Set $V = \cap \{V_x : x \in K_0\}$. Then V is a regular open set in Y containing y. Therefore, we have $f(K) \cap V \subset [\bigcup_{x \in K_0} f(U_x)] \cap V \subset \bigcup_{x \in K_0} [f(U_x) \cap V] = \emptyset$. It follows that $y \notin \delta - \operatorname{cl}(f(K))$. Therefore, f(K) is δ -closed in (Y, σ) .

Corollary 24. If $f : (X, \tau) \to (Y, \sigma)$ is an almost δ -precontinuous function and Y is Hausdorff, then f(K) is δ -closed in (Y, σ) for each subset K which is δ -precompact relative to (X, τ) .

Theorem 25. If $f : X \to Y$ is almost δ -precontinuous, $g : X \to Y$ is δ -continuous and Y is Hausdorff, then the set $\{x \in X : f(x) = g(x)\}$ is δ -preclosed in X.

Proof. Let $A = \{x \in X : f(x) = g(x)\}$ and $x \in X \setminus A$. Then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open sets V and W of Y such that $f(x) \in V$, $g(x) \in W$ and $V \cap W = \emptyset$; hence $\operatorname{int}(\operatorname{cl}(V)) \cap \operatorname{int}(\operatorname{cl}(W)) = \emptyset$. Since f is almost δ -precontinuous, there exists $G \in \delta PO(X, x)$ such that $f(G) \subset \operatorname{int}(\operatorname{cl}(V))$. Since g is δ -continuous, there exists an δ -open set H of X containing x such that $g(H) \subset \operatorname{int}(\operatorname{cl}(W))$. Now, put $U = G \cap H$, then $U \in \delta PO(X, x)$ and $f(U) \cap g(U) \subset \operatorname{int}(\operatorname{cl}(V)) \cap \operatorname{int}(\operatorname{cl}(W)) = \emptyset$. Therefore, we obtain $U \cap A = \emptyset$ and hence $x \in X \setminus \delta - \operatorname{pcl}(A)$. This shows that A is δ -preclosed in X.

Theorem 26. If $f_1 : X_1 \to Y$ is weakly δ -precontinuous, $f_2 : X_2 \to Y$ is almost δ -precontinuous and Y is Hausdorff, then the set $\{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = f(x_2)\}$

is δ -preclosed in $X_1 \times X_2$.

Proof. Let $A = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = f(x_2)\}$ and $(x_1, x_2) \in (X_1 \times X_2) \setminus A$. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$; hence $\operatorname{cl}(V_1) \cap \operatorname{int}(\operatorname{cl}(V_2)) = \emptyset$. Since f_1 (resp, f_2) is weakly δ -precontinuous (resp. almost δ -precontinuous), there exists $U_1 \in \delta PO(X_1, x_1)$ such that $f_1(U_1) \subset \operatorname{cl}(V_1)$ (resp. $U_2 \in \delta PO(X_2, x_2)$ such that $f_2(U_2) \subset \operatorname{int}(\operatorname{cl}(V_2))$). Therefore, we obtain $(x_1, x_2) \in U_1 \times U_2 \subset (X_1 \times X_2) \setminus A$ and $U_1 \times U_2 \in \delta PO(X_1 \times X_2)$. This shows that A is δ -preclosed in $X_1 \times X_2$.

Let $\{X_i : i \in I\}$ and $\{Y_i : i \in I\}$ be any two families of spaces with the same index set *I*. For each $i \in I$, let $f_i : X_i \to Y_i$ be a function. The product space $\prod_{i \in I} X_i$ will be denoted by $\prod X_i$ and the product function $\prod f_i : \prod X_i \to \prod Y_i$ is simply

will be denoted by $\prod X_i$ and the product function $\prod J_i : \prod X_i \to \prod Y_i$ is simple denoted by $f : \prod X_i \to \prod Y_i$.

Theorem 27. If a function $f : X \to \prod Y_i$ is almost δ -precontinuous, then $p_i \circ f : X \to Y_i$ is almost δ -precontinuous for each $i \in I$, where p_i is the projection of $\prod Y_i$ onto Y_i .

Proof. Let V_i be any regular open set of Y_i . Since p_i is continuous open, it is an R-map and hence $p_i^{-1}(V_i) \in RO(\prod Y_i)$. By Theorem 7, $f^{-1}(p_i^{-1}(V_i)) = (p_i \circ f)^{-1}(V_i) \in \delta PO(X)$. This shows that $p_i \circ f$ is almost δ -precontinuous for each $i \in I$. \Box

Theorem 28. The product function $f : \prod X_i \to \prod Y_i$ is almost δ -precontinuous if and only if $f_i : X_i \to Y_i$ is almost δ -precontinuous for each $i \in I$.

Proof. (Necessity). Let k be an arbitrarily fixed index and V_k any regular open set of Y_k . Then $\prod Y_j \times V_k$ is regular open in $\prod Y_i$, where $j \in I$ and $j \neq k$, and hence $f^{-1}(\prod Y_j \times V_k) = \prod Y_j \times f_k^{-1}(V_k)$ is δ -preopen in $\prod X_i$. Thus, $f_k^{-1}(V_k)$ is δ -preopen in X_k and hence f_k is almost δ -precontinuous.

(Sufficiency). Let $\{x_i\}$ be any point of $\prod X_i$ and W any regular open set of $\prod Y_i$ containing $f(\{x_i\})$. There exists a finite subset I_0 of I such that $V_k \in RO(Y_k)$ for each $k \in I_0$ and $\{f_i(x_i)\} \in \prod \{V_k : k \in I_0\} \times \prod \{Y_j : j \in I \setminus I_0\} \subset W$. For each $k \in I_0$, there exists $U_k \in \delta PO(X_k)$ containing x_k such that $f_k(U_k) \subset V_k$. Thus, $U = \prod \{U_k : k \in I_0\} \times \prod \{X_j : j \in I \setminus I_0\}$ is a δ -precopen set of $\prod X_i$ containing $\{x_i\}$ and $f(U) \subset W$. This shows that f is almost δ -precontinuous.

3. Functions

Definition 29. Let (X, τ) be a topological space. The collection of all regular open sets forms a base for a topology τ_s . It is called the semiregularization. In case when $\tau = \tau_s$, the space (X, τ) is called semi-regular [23].

Theorem 30. Let (X, τ) be a semi-regular space. Then a function $f : (X, \tau) \to (Y, \sigma)$ is almost precontinuous if and only if it is almost δ -precontinuous.

Definition 31. A function $f: X \to Y$ is said to be δ -almost continuous [20] if for

126

each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta PO(X, x)$ such that $f(U) \subset V$.

Definition 32. A function $f : X \to Y$ is said to be δ -preirresolute if for each $x \in X$ and each δ -preopen set V of Y containing f(x), there exists $U \in \delta PO(X, x)$ such that $f(U) \subset V$.

Definition 33. A function $f : X \to Y$ is said to be almost δ -preopen if $f(U) \subset \operatorname{int}(\operatorname{cl}(f(U)))$ for every δ -preopen set U of X.

Theorem 34. If $f : X \to Y$ is an almost δ -preopen and weakly δ -precontinuous function, then f is almost δ -precontinuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). Since f is weakly δ -precontinuous, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset \operatorname{cl}(V)$. Since f is almost δ -preopen, $f(U) \subset \operatorname{int}(\operatorname{cl}(f(U))) \subset \operatorname{int}(\operatorname{cl}(V))$ and hence f is almost δ -precontinuous.

Definition 35. A space X is said to be

(1) almost regular [22] if for any regular closed set F of X and any point $x \in X \setminus F$ there exist disjoint open sets U and V such that $x \in U$ and $F \subset V$,

(2) semi-regular if for any open set U of X and each point $x \in U$ there exists a regular open set V of X such that $x \in V \subset U$.

Theorem 36. If $f : X \to Y$ is a weakly δ -precontinuous function and Y is almost regular, then f is almost δ -precontinuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the almost regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset \operatorname{cl}(G) \subset \operatorname{int}(\operatorname{cl}(V))$ [22, Theorem 2.2]. Since f is weakly δ -precontinuous, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset \operatorname{cl}(G) \subset \operatorname{int}(\operatorname{cl}(V))$. Therefore, f is almost δ -precontinuous.

Theorem 37. If $f : X \to Y$ is an almost δ -precontinuous function and Y is semiregular, then f is δ -almost continuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). By the semiregularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost δ -precontinuous, there exists $U \in \delta PO(X, x)$ such that $f(U) \subset int(cl(G)) = G \subset V$ and hence f is δ -almost continuous. \Box

Theorem 38. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the following hold:

(1) If f is almost δ -precontinuous and g is an R-map, then the composition $g \circ f : X \to Z$ is almost δ -precontinuous,

(2) If f is δ -preirresolute and g is almost δ -precontinuous, the composition $g \circ f$: $X \to Z$ is almost δ -precontinuous.

Definition 39. A function $f: X \to Y$ is said to be faintly δ -precontinuous if for

each $x \in X$ and each θ -open set V of Y containing f(x), there exists $U \in \delta PO(X, x)$ such that $f(U) \subset V$.

Theorem 40. Let $f : X \to Y$ be a function. Suppose that Y is regular. Then, the following properties are equivalent:

- (1) f is δ -almost continuous,
- (2) $f^{-1}(\delta \operatorname{cl}(B))$ is δ -preclosed in X for every subset B of Y,
- (3) f is almost δ -precontinuous,
- (4) f is weakly δ -precontinuous,
- (5) f is faintly δ -precontinuous.

Proof. (1) \Rightarrow (2). Since δ -cl(B) is closed in Y for every subset B of Y, $f^{-1}(\delta$ -cl(B)) is δ -preclosed in X.

 $(2) \Rightarrow (3)$. For any subset B of Y, $f^{-1}(\delta - \operatorname{cl}(B))$ is δ -preclosed in X and hence we have $\delta - \operatorname{pcl}(f^{-1}(B)) \subset \delta - \operatorname{pcl}(f^{-1}(\delta - \operatorname{cl}(B))) = f^{-1}(\delta - \operatorname{cl}(B))$. It follows that f is almost δ -precontinuous

 $(3) \Rightarrow (4)$. This is obvious.

 $(4) \Rightarrow (5)$. Let A be any subset of X. Let $x \in \delta - pcl(A)$ and V be any open set of Y containing f(x). There exists $U \in \delta PO(X, x)$ such that $f(U) \subset cl(V)$. Since $x \in \delta - pcl(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subset cl(V) \cap f(A)$. Therefore, we have $f(x) \in \theta - cl(f(A))$ and hence $f(\delta - pcl(A)) \subset \theta - cl(f(A))$.

Let B be any subset of Y. We have $f(\delta - \operatorname{pcl}(f^{-1}(B))) \subset \theta - \operatorname{cl}(B)$ and $\delta - \operatorname{pcl}(f^{-1}(B)) \subset f^{-1}(\theta - \operatorname{cl}(B))$.

Let F be any θ -closed set of Y. It follows that $\delta - \text{pcl}(f^{-1}(F)) \subset f^{-1}(\theta - \text{cl}(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is δ -preclosed in X and hence f is faintly δ -precontinuous.

 $(5) \Rightarrow (1)$. Let V be any open set of Y. Since Y is regular, V is θ -open in Y. By the faint δ -precontinuity of f, $f^{-1}(V)$ is δ -preopen in X. Therefore, f is δ -almost continuous.

Recall that a space (X, τ) is said to be (1) submaximal [3] if every dense subset of X is open in X, (2) extremally disconnected [3, 15] if $cl(U) \in \tau$ for every $U \in \tau$.

Definition 41. A function $f : X \to Y$ is said to be faintly continuous [9] (resp. faintly semi-continuous [19], faintly precontinuous [19], faintly β -continuous [12], [19], faintly α -continuous [12]) if $f^{-1}(V)$ is open (resp. semi-open, preopen, β -open, α -open) in X for each θ -open set V of of Y.

Theorem 42. If (X, τ) is submaximal extremally disconnected semi-regular and (Y, σ) is regular, then the following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (1) f is faintly continuous,
- (2) f is faintly α -continuous,

- (3) f is faintly semi-continuous,
- (4) f is faintly precontinuous,
- (5) f is faintly δ -precontinuous,
- (6) f is faintly γ -continuous,
- (7) f is faintly β -continuous,
- (8) f is δ -almost continuous,
- (9) f is almost δ -precontinuous,
- (10) f is weakly δ -precontinuous.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and βcontinuous mappings, Bull Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] N. Bourbaki, General Topology, Part I, addison Wesley, reading, Mass., (1996).
- [4] D. Carnahan, Some Properties Related to Compactness in Topological Spaces, Ph. D. Thesis (Univ. Arkansas, 1973).
- [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971) 99-112.
- [6] Ε. Ekici, (δ-pre,s)-continuous functions, Bulletin of the Malaysian Mathematical Society, accepted (2004).
- [7] A. A. El-Atik, A study of some types of mappings on topological spaces, MSc Thesis, Tanta Univ., Egypt, (1997).
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- P. E. Long and L. L. Herrington, The T_θ-topology and faintly continuous functions, Kyungpook Math. J., 22(1982), 7-14.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [11] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungarica, 74(3)(1997), 211-219.
- [12] A. A. Nasef, Another weak forms of faint continuity, Chaos, Solitons and Fractals, 12(2001), 2219-2225.
- [13] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 96J-970.
- [14] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161-166.
- [15] T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl. Math., 19(1988), 325-329.

- [16] T. Noiri, Almost α-continuous functions, Kyungpook Math. J., 28(1988), 71-77.
- [17] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20(1989), 571-576.
- [18] T. Noiri, Almost quasi-continuous functions, Bull. Inst. Math. Acad. Sinica, 18(1990), 321-332.
- [19] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie, 34(82)(1990), 270-363.
- [20] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(4)(1993), 357-366.
- [21] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16(1968), 63-73.
- [22] M. K. Signal and S. P. Arya, On almost-regular spaces, Glasnik Mat. III, 4(24)(1969), 89-99.
- [23] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937) 375-381.
- [24] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78(1968), 103-118.