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ABSTRACT. A new class of functions is introduced in this paper. This class is called
almost é-precontinuity. This type of functions is seen to be strictly weaker than almost
precontinuity. By using J-preopen sets, many characterizations and properties of the said
type of functions are investigated.

1. Introduction

The notion of d-preopen set was introduced by Raychaudhuri and Mukherjee
[20] in 1993. We introduce here a new type of functions strictly weaker than al-
most continuity. We call this the almost d-precontinuous functions. We investigate
properties of such functions.

Throughout the present paper, spaces mean topological spaces and f : (X,7) —
(Y,0) (or simply f: X — Y) denotes a function f of a space (X, 7) into a space
(Y, o). Let S be a subset of a space X. The closure and the interior of S are denoted
by cl(S) and int(S), respectively.

A subset S of a space X is said to be regular open [23] if S = int(cl(S)) and
d-open [24] if for each x € S, there exists a regular open set W such that x € W C S.

A subset S of a space X is said to be a-open [13] (resp. semi-open [8], preopen
[10], y-open [7], S-open [1] or semi-preopen [2]) if S C int(cl(int(S))) (resp. S C
cl(int(S)), S C int(cl(S)), S C int(cl(S)) U cl(int(S)), S C cl(int(cl(S)))).

The complement of a regular open set is said to be regular closed [23]. The
complement of a semiopen set is said to be semiclosed [5]. The intersection of all
semiclosed sets containing a subset A of X is called the semi-closure [5] of A and is
denoted by s-cl(A). The union of all semiopen sets contained in a subset A of X is
called the semi-interior of A and is denoted by s-int(A4). A point x € X is called a
d-cluster (resp. #-cluster) point of A [24] if ANint(cl(U)) # @ (resp. ANcl(U) # @)
for each open set U containing x. The set of all d-cluster (resp. 6-cluster) points
of A is called the d-closure (resp. -closure) of A and is denoted by d-cl(A) (resp.
6-cl(A)). If 6-cl(A) = A (resp. 6-cl(A) = A), then A is said to be d-closed (resp.

Received October 4, 2004.
2000 Mathematics Subject Classification: 54C10.
Key words and phrases: §-preopen set, almost continuity.

119



120 Erdal Ekici

f-closed). The complement of a d-closed (resp. 6-closed) set is said to be J-open
(resp. B-open).

A subset S of a topological space X is said to be d-preopen [20] iff S C int(d-
cl(S)). The complement of a d-preopen set is called a d-preclosed set [20]. The
union (resp. intersection) of all d-preopen (resp. J-preclosed) sets, each contained
in (resp. containing) a set S in a topological space X is called the d-preinterior
(resp. d-preclosure) of S and it is denoted by d-pint(S) (resp. d-pcl(S)) [20].

The family of all é-preopen (resp.regular open, preopen, S-open. a-open, semi-
open, d-open) sets of a space X will be denoted by §PO(X) (resp. RO(X), PO(X),
BO(X), aO(X), SO(X), 00(X)). The family of all §-preclosed (resp. regular
closed, d-closed) sets in a space X is denoted by 6PC(X) (resp. RC(X), 6C(X)).
The family of all §-preopen (resp.regular open, d-open) sets containing a point € X
will be denoted by 6PO(X, z) (resp. RO(X,z), 60(X,x)).

Lemma 1 (Raychaudhuri and Mukherjee [20]). Let A be a subset of a space X.
Then

(1

(2
(3) A
(4

d — pcl(X\A) = X\¢ — pint(A4),

x €6 —pcl(A) if and only if ANU # & for each U € §PO(X, x),
is 0-preclosed in X if and only if A =38 — pcl(A),

d — pcl(A) is §-preclosed in X .

\/\/\/\/

Lemma 2 (Noiri [17], [18]). For a subset of a space Y, the following hold:
(1) a—cl(V) =cl(V) for every V € pO(Y).
(2) p—cl(F) =cl(V) for every V € SO(Y).
(3) s —cl(V) = int(cl(V)) for every preopen set V of a space X.

2. Characterizations

Definition 3. A function f : (X,7) — (Y,0) is said to be almost §-precontinuous
if for each 2 € X and each V € RO(Y) containing f(z), there exists U € §PO(X)
containing z such that f(U) C V.

Definition 4. A function f: (X,7) — (Y, 0) is said to be R-map [4] (resp. almost
continuous [21], almost a-continuous [16], almost precontinuous [11], é-continuous

[14]) if f71(V) € RO(X) (resp. f~ (V) e, f71(V) € aO(X), f~1(V) € PO(X),
f~1(V) € §O(X)) for every V € RO(Y).

Remark 5. The following implications hold:
al. contin. = al. a-contin. = al. precontin. = al. j-precontin.

The converses are not true in general.

Example 6. Let X = {a,b,c} and 7 = {X,2,{a},{c},{a,c},{b,c}}. Let f :
X — X be a function defined by f(a) = b, f(b) = a, f(c) = c. Then, f is almost
d-precontinuous but not almost precontinuous.
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The other examples can be seen in [11], [16].
Theorem 7. For a function f: (X,7) — (Y,0), the following are equivalent:
(1) f is almost 0-precontinuous;

(2) for each x € X and each V € o containing f(x), there exists U € 6PO(X)
containing x such that f(U) C int(cl(V));

(3) f~YF) € SPC(X) for every F € RC(Y);

(4) f~YV) € 6PO(X) for every V € RO(Y).

(5) f(6 —pcl(A)) C d —cl(f(A)) for every subset A of X ;

(6) 0 —pel(f~Y(B)) C f~1(6-cl(B)) for every subset B of Y ;

(7) f~YF) € 6PC(X) for every d-closed set F of (Y,0);

(8) f~Y(V) € 6PO(X) for every 6-open set V of (Y,o);

(9) 6 — pel(f~(cl(int(cl(B ))))) C f~Y(cl(B)) for every subset B of Y ;
(10) § — pel(f~L(cl(int(F)))) C f~1(F) for every closed set F of Y ;
(11) § — pel(f~L(cl(V))) C f~ ( (V') for every open set V of Y;
(12) f~Y(V) c 6 — pint(f~(s — cl(V))) for every open set V of Y ;
(13) f~HV) Cint(d — cl(f~1(s — cl(V)))) for every open set V of Y
(14) f~Y(V) c § — pint(f~L(int(cl(V))))) for every open set V of Y
(15) f=YV) Cint(d — cl(f~(int(cl(V)))))) for every open set V of Y
(16) & —pel(f~H(V)) € f~H(cl(V)) for each V € BO(Y)

(17) & —pel(f~H(V)) C f~H(cl(V)) for each V € SO(Y)

(18) f~Y(V) c § — pint(f~L(int(cl(V)))) for each V € PO(Y);
(19) 6 —pel(f~1(V)) C f~Ha —cl(V)) for each V € BO(Y);
(20) & —pel(f~1(V)) C f~p — cl(V)) for each V € SO(Y);
(21) f~Y5V) c 6 —pint(f~(s —cl(V))) for each V € PO(Y).

Proof. (1)=(2). Let x € X and V € o containing f(z). We have int(cl(V)) €
RO(Y). Since f is almost d-precontinuous, then there exists U € éPO(X, ) such
that f(U) C int(cl(V)).

(2)=(1). Obvious.

(3)<(4). Obvious.

(1)=(4). Let v € X and V € RO(Y, f(z)). Since f is almost 0- precontmuous
then there exists U, € 6PO(X,z) such that f(U,) C V. We have U, C f~1(V).
Thus, f~4(V) = UU, € 6PO(X).
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(4)=(1). Obvious.

(1)=(5). Let A be a subset of X. Since 0 — cl(f(A)) is d-closed in Y, it is
denoted by N{F; : F; € RC(Y), i € I}, where I is an index set. By (1)<(3),
we have A C f~1(6 — cl(f(A)) = n{fY(F) : i € I} € §PC(X) and hence
d—pcl(A) C f71(5 —cl(f(A))). Therefore, we obtain f(§ —pcl(A)) C & —cl(f(A)).

(5):>(6). Let B be a subset of Y. We have f(§ — pcl(f~1(B))) C 6 —

c(f(f~Y(B))) C § — cl(B) and hence 6 — pcl(f~1(B)) C f~1(6 — cl(B)).
(6)=(7). Let F be any d-closed set of (Y,o). We have § — pcl(f~1(F)) C
710 —cl(F)) = f~1(F) and hence f~1(F) is é-preclosed in (X, 7).

(7)=(8). Let V be any §-open set of (Y, o). We have f~1(Y\V) = X\f~}(V) €
JPC(X) and hence f~1(V) € §PO(X).
8)=(1). Let V be any regular open set of (Y,0). Since V is d-open in (Y, ),

(
f71(V) € §PO(X) and hence, by (1)<(4), f is almost d-precontinuous.

(1)=(9). Let B be any subset of Y. Assume that € X\ f~!(cl(B)). Then
f(z) € Y\cl(B) and there exists an open set V containing f(z) such that V' N
B = @; hence int(cl(V)) N cl(int(cl(B))) = @. Since f is almost J-precontinuous,
there exists U € dPO(X,z) such that f(U) C int(cl(V)). Therefore, we have
U N f~(cl(int(cl(B)))) = @ and hence z € X\& — pel(f~(cl(int(cl(B))))). Thus
we obtain & — pel(f~1(cl(int(cl(B))))) C f~(cl(B)).

(9)=(10). Let F be any closed set of Y. Then we have

& = pel(f~H(cl(int(F))) = 0 — pel(f~* (cl(int(cl(F)))))
CfHA(F)) = f7HE).

(10)=(11). For any open set V of Y, ¢l(V) is regular closed in ¥ and we have

§ = pel(f7H(cl(V)) = 6 — pel(f " (cl(int(cl(V))))) € £~ (cl(V)).

(11)=(12). Let V be any open set of Y. Then Y'\cl(V) is open in Y and by
using Lemma 2 we have

X\6 — pint(f (s-l(V)))
— 5 — pel(f (Y \int(el(V))) € £ (d(Y\U(V))) € X\fH(V),

Therefore, we obtain f~1(V) C 6 — pint(f~*(s — cl(V))).

(12)=>(13). Let V be any open set of Y. We obtain f~1(V) C § — pint(f~1(s —
cl(V))) Cint(d — el(f~1(s — cl(V)))).

(13)=(1). Let z be any point of X and V any open set of Y containing
f(x). Then z € f~Y(int(cl(V))) C int(6 — cl(f~1(s — cl(int(cl(V)))))) = int(§ —
cl(f~(int(cl(V))))). Thus, f~1(int(cl(V))) € SPO(X). Take U = f~L(int(cl(V))).
We obtain € U and f(U) C int(cl(V')). Therefore, f is almost §-precontinuous.

(12)<(14) and (13)<(15). Obvious.

(1)=(16). Let V be any [-open set of Y. It follows from [2, Theorem 2.4]
that cl(V) is regular closed in Y. Since f is almost d-precontinuous, by (1)<(3),

~“L(cl(V)) is §-preclosed in X. Therefore, we obtain § —pcl(f~1(V)) C f~1(cl(V)).
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(16)=-(17). This is obvious since SO(Y") C SO(Y).

(17)=(1). Let F' be any regular closed set of Y. Then F' is semi-open in Y
and hence § — pel(f~1(F)) C f~1(cl(F)) = f~}(F). This shows that f~1(F) is
d-preclosed. Therefore, by (1)<(3), f is almost §-precontinuous.

(1)=-(18). Let V be any preopen set of Y. Then V' C int(cl(V)) and int(cl(V)) is
regular open in Y. Since f is almost d-precontinuous, by (1)< (4), f~*(int(cl(V)))
is 6—preopen in X and hence we obtain that f=1(V) c f~(int(cl(V))) C & —
gy (V)

(18)=(1). Let V be any regular open set of Y. Then V is preopen and f~4(V) C
§ —pint(f~(int(cl(V)))) = § — pint(f~1(V)). Therefore, f~1(V) is 5-preopen in X
and hence, by (1)<(4), f is almost §-precontinuous.

(16)=(19), (17)=(20), (18)<(21). Obvious. O

Lemma 8 (Raychaudhuri and Mukherjee [20]). A set S in X is 6-preopen if and
only if SNG € §PO(X) for every §-open set G of X.

Lemma 9 (Raychaudhuri and Mukherjee [20]). Let A and X, be subsets of a space
(X,7). If A€ 6PO(X) and Xy € 60(X), then AN Xy € 6PO(X)).

Theorem 10. If f : (X,7) — (Y, 0) is almost §-precontinuous and A is §-open in
(X, 1), then the restriction f |a: (A,74) — (Y, 0) is almost d-precontinuous.

Proof. Let V be any regular open set of Y. By Theorem 7, we have f~1(V) €
§PO(X) and hence (f [4)"(V) = f~*(V) N A € §PO(A) by Lemma 9. Thus, it
follows that f |4 is almost d-precontinuous. O

Lemma 11 (Raychaudhuri and Mukherjee [20]). Let A and Xy be subsets of a
space (X, 7). If A€ 6PO(Xy) and Xy € 00(X), then A € 0PO(X).

Theorem 12. Let f : (X,7) — (Y o) be a function and {U; : i € I} a cover of X
by d-open sets of (X, ). : (Ui, 1u,) — (Y, 0) is almost §-precontinuous for
each i € I, then f is almost J- precontmuous

Proof. Let V be any regular open set of (Y, o). Then, we have
fFFV)=Xnf Y V)=u{Un ' (V):iel}=U{(f

Since f |y, is almost d-precontinuous, (f |y,) (V) € §PO(U;) for each i € I. By
Lemma 11, for each i € I, (f |y,)"*(V) is d-preopen in X and hence f~1(V) is
d-preopen in X. Therefore, f is almost §-precontinuous. O

v,) TV i e I},

Theorem 13. Let f : (X,7) — (Y,0) be a function and g : (X,7) — (X XY, 7 X 0)
the graph function defined by g(x) = (x, f(x)) for every x € X. Then g is almost
d-precontinuous if and only if [ is almost §-precontinuous.

Proof. (=). Let x € X and V € RO(Y') containing f(z). Then, we have g(z) =
(z, f(x)) € X xV € RO(X xY). Since g is almost J-precontinuous, there exists a
d-preopen set U of X containing x such that g(U) C X x V. Therefore, we obtain
f(U) C V and hence f is almost §-precontinuous.
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(«). Let x € X and W be a regular open set of X x Y containing g(x). There
exist Uy € RO(X) and V € RO(Y) such that (z, f(z)) € Uy x V. C W. Since f is
almost d-precontinuous, there exists Us € §PO(X) such that x € U and f(Us) C V.
Put U = Uy NUy, then we obtain x € U € 6PO(X) and g(U) C Uy x V. .C W. This
shows that g is almost J-precontinuous. 0

Definition 14. The d0-prefrontier of a subset A of X, denoted by 6§ — pfr(A), is
defined by 6 — pfr(A) =6 — pcl(A) NJ — pcl(X\A) = 6 — pcl(A)\d — pint(A).

Theorem 15. The set of all points x of X at which a function f : X — Y is
not almost §-precontinuous is identical with the union of the §-prefrontiers of the
inverse images of reqular open sets containing f(x).

Proof. Let x be a point of X at which f is not almost §-precontinuous Then, there
exists a regular open set V of Y containing f(x) such that U N (X\f~1(V)) # @
for every U € §PO(X,x). Therefore, we have x € § — pcl(X\f~1(V)) = X\ —
pint(f~1(V)) and z € f~1(V). Thus, we obtain z € § — pfr(f~1(V)).

Conversely, suppose that f is almost §-precontinuous at x € X and let V
be a regular open set containing f(z). Then there exists U € §PO(X,z) such
that U C f~%(V); hence z € § — pint(f~1(V)). Therefore, it follows that = €
X\§ — pfr(f~1(V)). This completes the proof. O

Definition 16. A space X is said to be d-pre-Ty [6] if for any distinct points x, y
of X, there exist disjoint d-preopen sets U, V of X such that z € U and y € V.

Definition 17. A function f : X — Y is said to be weakly J-precontinuous if for
each € X and each open set V of Y containing f(z), there exists U € 6PO(X, x)
such that f(U) C cl(V).

Theorem 18. If for each pair of distinct points x1 and xo in a space X, there
exists a function f of X into a Hausdorff space Y such that

(1) F(a1) # (@),

(2) f is weakly §-precontinuous at x1 and

(3) almost §-precontinuous at xa,

then X is 0-pre-Ts.

Proof. Since Y is Hausdorff, there exist open sets V7 and V5 of Y such that f(z1) €
Vi, f(z2) € Vo and Vi N Ve = @; hence cl(Vy) Nint(cl(Vz)) = @. Since f is weakly
d-precontinuous at z, there exists Uy € 6PO(X,z1) such that f(Uy) C cl(V7).
Since f is almost J-precontinuous at xs, there exists Uy € dPO(X, z5) such that
f(Us2) C int(cl(V2)). Therefore, we obtain Uy N Uy = &. This shows that X is
o-pre-Ts. a

Let f: X — Y be a function. The subset {(z, f(z)) : 2 € X} C X xY is called
the graph of f and is denoted by G(f).

Definition 19. A function f : X — Y has a (0, r)-graph if for each (z,y) €
X x Y\G(f), there exist U € §PO(X, z) and a regular open set V of Y containing
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y such that (U x V)NG(f) = 2.

Lemma 20. A function f : X — Y has a (6p,7)-graph if and only if for each
(x,y) € X XY such that y # f(x), there exist a §-preopen set U and a regular open
set V' containing x and vy, respectively, such that f(U)NV = &.

Theorem 21. If f : X — Y is an almost §-precontinuous function and Y is
Hausdorff, then f has a (6,,7)-graph.

Proof. Let (z,y) € X x Y such that y # f(z). Then there exist open sets V' and
W such that y € V, f(z) € W and VNW = &; hence int(cl(V)) Nint(cl(W)) = 2.
Since f is almost d-precontinuous, there exists U € §PO(X, x) such that f(U) C
int(cl(WW)). This implies that f(U) Nint(cl(V)) = @. Therefore, f has a (dp,7)-
graph. O

Definition 22. A space X is said to be d-pre-compact [6] if every J-preopen cover
of X has a finite subcover.

Theorem 23. If f : (X,7) — (Y,0) has a (0,,7)-graph, then f(K) is d-closed in
(Y, o) for each subset K which is §-pre-compact relative to (X, 7).

Proof. Suppose that y ¢ f(K). Then (z,y) ¢ G(f) for each € K. Since G(f)
is (6p, r)-graph, there exist U, € §PO(X) containing x and a regular open set V,
of Y containing y such that f(U,;) NV, = &. The family {U, : = € K} is a cover
of K by d-preopen sets. Since K is §-pre-compact relative to (X, 7), there exists a
finite subset Ky of K such that K C U{U, : € Ko}. Set V.=n{V, : x € Ky}.
Then V is a regular open set in Y containing y. Therefore, we have f(K)NV C
[me%of(Um)]ﬂV C IGL}l{O[f(Uf)ﬁV] = . It follows that y ¢ 6 —cl(f(K)). Therefore,

f(K) is d-closed in (Y, 0). O

Corollary 24. If f : (X,7) — (Y,0) is an almost §-precontinuous function and
Y is Hausdorff, then f(K) is d-closed in (Y,o0) for each subset K which is §-pre-
compact relative to (X, T).

Theorem 25. If f: X — Y is almost §-precontinuous, g : X — Y is §-continuous
and Y is Hausdorff, then the set {x € X : f(x) = g(x)} is d-preclosed in X .

Proof. Let A={x € X : f(x) =g(x)} and x € X\ A. Then f(x) # g(x). Since Y is
Hausdorff, there exist open sets V and W of Y such that f(z) € V, g(z) € W and
V NW = @; hence int(cl(V)) Nint(cl(W)) = @. Since f is almost d-precontinuous,
there exists G € 0PO(X,z) such that f(G) C int(cl(V)). Since g is J-continuous,
there exists an d-open set H of X containing = such that g(H) C int(cl(W)). Now,
put U = GNH, then U € 6PO(X, z) and f(U)Ng(U) C int(cl(V))Nint(cl(W)) = &.
Therefore, we obtain U N A = & and hence € X\§ — pcl(A). This shows that A
is d-preclosed in X. a

Theorem 26. If f1 : X1 — Y is weakly d-precontinuous, fo : Xo — Y is almost 6-
precontinuous and Y is Hausdorff, then the set {(x1,x2) € X1 X Xo : f(x1) = f(z2)}
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is d-preclosed in X1 X Xs.

Proof. Let A = {(z1,22) € X1 x Xo : f(x1) = f(x2)} and (x1,22) € (X7 X
X5)\A. Then f(z1) # f(x2) and there exist open sets V; and V5 of Y such that
f(z1) € Vi, f(z2) € Vo and V3 N Vo = &; hence cl(V1) Nint(cl(V2)) = &. Since
f1 (resp, f2) is weakly d-precontinuous (resp. almost §-precontinuous), there exists
Uy € 6PO(Xy, 1) such that fi1(Uy) C cl(V1) (resp. Uz € 0PO(Xg,x2) such that
f2(Us) C int(cl(V2))). Therefore, we obtain (z1,z2) € Uy x Us C (X7 x X2)\A and
Uy x Uy € §PO(X; x X3). This shows that A is §-preclosed in X; x Xo. O

Let {X; :i €I} and {Y; : i € I} be any two families of spaces with the same
index set I. For each ¢ € I, let f; : X; — Y; be a function. The product space [] X;
il
will be denoted by []X; and the product function [] f; : [[X; — [][Y: is simply
denoted by f: [[X; — [[Y:.

Theorem 27. If a function f: X — [[Y; is almost d-precontinuous, then p; o f :
X —Y; is almost d-precontinuous for each i € I, where p; is the projection of [[Y;
onto Y;.

Proof. Let V; be any regular open set of Y;. Since p; is continuous open, it is
an R-map and hence p; ' (V;) € RO([[Y;). By Theorem 7, f~*(p; (Vi) = (p; o
f)71(V;) € 6PO(X). This shows that p;o f is almost d-precontinuous for each i € I.
O

Theorem 28. The product function f : [[ X; — [[Y: is almost §-precontinuous if
and only if f; : X; — Y; is almost d-precontinuous for each i € I.

Proof. (Necessity). Let k be an arbitrarily fixed index and Vi any regular open
set of Y. Then [[Y; X Vi is regular open in [[Y;, where j € I and j # k, and
hence f~Y([]Y; x Vi) = [1Y; x fi ' (Vi) is d-preopen in [[ X;. Thus, fi ' (Vi) is
d-preopen in X and hence f; is almost d-precontinuous.

(Sufficiency). Let {z;} be any point of [[ X; and W any regular open set of
[1Y: containing f({z;}). There exists a finite subset I of I such that V}, € RO(Y%)
for each k € Iy and {fi(z;)} € [[{Ve : k € Lo} x [[{Y; : j € I\Ip} C W. For each
k € Iy, there exists Uy € dPO(X}) containing xj such that fr(Ug) C Vi. Thus,
U=1{Us: kelo} x[[{X;:jeI\Io} is a d-preopen set of [[ X; containing {z;}
and f(U) Cc W. This shows that f is almost J-precontinuous. O

3. Functions

Definition 29. Let (X, 7) be a topological space. The collection of all regular open
sets forms a base for a topology 75. It is called the semiregularization. In case when
T = T, the space (X, 7) is called semi-regular [23].

Theorem 30. Let (X,7) be a semi-reqular space. Then a function f : (X,7) —
(Y, 0) is almost precontinuous if and only if it is almost §-precontinuous.

Definition 31. A function f: X — Y is said to be §-almost continuous [20] if for
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each z € X and each open set V of Y containing f(z), there exists U € §PO(X, x)
such that f(U) C V.

Definition 32. A function f : X — Y is said to be d-preirresolute if for each z € X
and each d-preopen set V of YV containing f(z), there exists U € éPO(X, z) such
that f(U) C V.

Definition 33. A function f : X — Y is said to be almost §-preopen if f(U) C
int(cl(f(U))) for every d-preopen set U of X.

Theorem 34. If f : X — Y is an almost 6-preopen and weakly §-precontinuous
function, then fis almost §-precontinuous.

Proof. Let x € X and let V' be an open set of Y containing f(z). Since f is
weakly 0-precontinuous, there exists U € §PO(X, x) such that f(U) C cl(V). Since
f is almost d-preopen, f(U) C int(cl(f(U))) C int(cl(V)) and hence f is almost
d-precontinuous. O

Definition 35. A space X is said to be

(1) almost regular [22] if for any regular closed set F' of X and any point
x € X\F there exist disjoint open sets U and V such that z € U and F C V,

(2) semi-regular if for any open set U of X and each point x € U there exists a
regular open set V of X such that x € V C U.

Theorem 36. If f : X — Y is a weakly d-precontinuous function and Y is almost
regular, then [ is almost §-precontinuous.

Proof. Let x € X and let V' be any open set of Y containing f(x). By the almost
regularity of Y, there exists a regular open set G of Y such that f(z) € G C
cl(G) C int(cl(V)) [22, Theorem 2.2]. Since f is weakly J-precontinuous, there
exists U € 0PO(X,z) such that f(U) C cl(G) C int(cl(V)). Therefore, f is almost
d-precontinuous. O

Theorem 37. If f: X — Y is an almost d-precontinuous function and Y is semi-
regular, then f is d-almost continuous.

Proof. Let x € X and let V be an open set of Y containing f(z). By the semi-
regularity of Y, there exists a regular open set G of Y such that f(z) € G C V.
Since f is almost d-precontinuous, there exists U € §PO(X,z) such that f(U) C
int(cl(G)) = G C V and hence f is §-almost continuous. O

Theorem 38. Let f: X — Y and g : Y — Z be functions. Then the following
hold:

(1) If f is almost d-precontinuous and g is an R-map, then the composition
go f: X — Z is almost §-precontinuous,

(2) If f is d-preirresolute and g is almost §-precontinuous, the composition go f :
X — Z is almost d-precontinuous.

Definition 39. A function f: X — Y is said to be faintly §-precontinuous if for
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each z € X and each #-open set V of Y containing f(z), there exists U € 6PO(X, x)
such that f(U) C V.

Theorem 40. Let f: X — Y be a function. Suppose that Y is reqular. Then, the
following properties are equivalent:

(1) f is d-almost continuous,

Proof. (1)=(2). Since §—cl(B) is closed in Y for every subset B of Y, f~1(6—cl(B))
is d-preclosed in X.

(2)=(3). For any subset B of Y, f~1(§ — cl(B)) is §-preclosed in X and hence
we have § — pcl(f~1(B)) C § — pcl(f~1 (6 — cl(B))) = f~1(5-cl(B)). It follows that
f is almost -precontinuous

(3)=-(4). This is obvious.

(4)=-(5). Let A be any subset of X. Let € § — pcl(A) and V be any open set
of Y containing f(z). There exists U € dPO(X, z) such that f(U) C cl(V). Since
x € § —pcl(A), we have UN A # @ and hence @ # f(U)N f(A) C (V)N f(A).
Therefore, we have f(z) € 8 — cl(f(A)) and hence f(§ — pcl(A4)) C 6 — cl(f(A)).

Let B be any subset of Y. We have f(6 — pcl(f~1(B))) C 6 — cl(B) and
5~ pel(f7(B)) € f1(0— cl(B)).

Let F be any f-closed set of Y. It follows that § — pel(f~1(F)) C f~1(0 —
cl(F)) = f~1(F). Therefore f~1(F) is d-preclosed in X and hence f is faintly
d-precontinuous.

(5)=(1). Let V be any open set of Y. Since Y is regular, V' is #-open in Y. By
the faint -precontinuity of f, f~1(V) is d-preopen in X. Therefore, f is §-almost
continuous. 0

Recall that a space (X, 7) is said to be (1) submaximal [3] if every dense subset
of X is open in X, (2) extremally disconnected [3, 15] if cl(U) € 7 for every U € 7.

Definition 41. A function f : X — Y is said to be faintly continuous [9] (resp.
faintly semi-continuous [19], faintly precontinuous [19], faintly S-continuous [12],
[19], faintly a-continuous [12]) if f~1(V) is open (resp. semi-open, preopen, (3-
open, a-open) in X for each f-open set V of of Y.

Theorem 42. If (X,7) is submazimal extremally disconnected semi-reqular and
(Y, 0) is regular, then the following are equivalent for a function f : (X,7) — (Y,0) :

(1) f is faintly continuous,

(2) f is faintly a-continuous,



(3
(4
(5
(6
(7
(8
9

)
)
)
) f is faintly y-continuous,
)
)
)
(10)
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f s faintly semi-continuous,
[ is faintly precontinuous,

f is faintly §-precontinuous,

f is faintly B-continuous,
f s d-almost continuous,
f is almost §-precontinuous,

[ is weakly d-precontinuous.
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