Weighted Sharing of Two Sets

Indrajit Lahiri
Department of Mathematics, University of Kalyani, West Bengal 741235, India e-mail: ilahiri@vsnl.com
Abhijit Banerjee
Department of Mathematics, Kalyani Government Engineering College, West Bengal 741235, India
e-mail: abanerjee@movemail.com

Abstract. Using the notion of weighted sharing of sets we improve two results of H. X. Yi on uniqueness of meromorphic functions.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with same multiplicities then we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities). If we do not take the multiplicities into account, f and g are said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\cup_{a \in S}\{z: f(z)-a=$ $0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity the set $\cup_{a \in S}\{z: f(z)-a=0\}$ is denoted by $\bar{E}_{f}(S)$.

In the paper we denote by S_{1} and S_{2} the following sets $S_{1}=\left\{1, \omega, \omega^{2}, \cdots, \omega^{n-1}\right\}$ and $S_{2}=\{\infty\}$, where $\omega=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ and n is a positive integer.

Yi ([6], [8]), Song-Li ([5]) and other authors investigate the problem of uniqueness of two meromorphic functions f, g for which $E_{f}\left(S_{i}\right)=E_{g}\left(S_{i}\right)$ or $\bar{E}_{f}\left(S_{i}\right)=$ $\bar{E}_{g}\left(S_{i}\right)$, where $i=1,2$.

In 1997 H. X. Yi and L. Z. Yang proved the following two results.
Theorem A ([10]). Let f and g be two nonconstant meromorphic functions such that $E_{f}\left(S_{1}\right)=E_{g}\left(S_{1}\right)$ and $\bar{E}_{f}\left(S_{2}\right)=\bar{E}_{g}\left(S_{2}\right)$. If $n \geq 6$ then one of the following hold:

$$
\begin{equation*}
f \equiv t g \tag{1}
\end{equation*}
$$

where $t^{n}=1$,

$$
\begin{equation*}
f . g \equiv s \tag{2}
\end{equation*}
$$

Received August 3, 2004.
2000 Mathematics Subject Classification: 30D35.
Key words and phrases: weighted sharing, meromorphic function, uniqueness.
where $s^{n}=1$ and $0, \infty$ are lacunary values of f and g.
Theorem B ([10]). Let f and g be two nonconstant meromorphic functions such that $\bar{E}_{f}\left(S_{1}\right)=\bar{E}_{g}\left(S_{1}\right)$ and $E_{f}\left(S_{2}\right)=E_{g}\left(S_{2}\right)$. If $n \geq 10$ then f and g satisfy (1) or (2).

In the paper, we investigate the possibility of improving Theorem A and B by relaxing the nature of sharing the sets. To this end we employ the idea of weighted sharing of values and sets introduced in [2], [3] which measures how close a shared value is to being shared IM or to being shared CM. In the following definition we explain this notion.

Definition 1 ([2], [3]). Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 2 ([3]). Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a nonnegative integer or ∞. We denote by $E_{f}(S, k)$ the set $\cup_{a \in S} E_{k}(a ; f)$.

Clearly $E_{f}(S)=E_{f}(S, \infty)$ and $\bar{E}_{f}(S)=\bar{E}_{f}(S, 0)$.
We now state the main results of the paper.
Theorem 1. If $E_{f}\left(S_{1}, 2\right)=E_{g}\left(S_{1}, 2\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $n \geq 6$ then f, g satisfy one of (1) and (2).

Theorem 2. If $E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right), E_{f}\left(S_{2}, 3\right)=E_{g}\left(S_{2}, 3\right)$ and $n \geq 10$ then f, g satisfy one of (1) and (2).

Though for the standard definitions and notations of the value distribution theory we refer to [1], we now explain some notations which are used in the paper.
Definition 3 ([2], [3]). We denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f.
Definition 4 ([2], [3]). If s is a positive integer, we denote by $\bar{N}(r, a ; f \mid \geq s)$ the reduced counting function of those a points of f whose multiplicities are not less than s.

Definition 5 ([2], [3]). Let f, g share a value a IM. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

Clearly $\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f)$.
Definition 6 ([10]). Let f, g share a value a IM. Let z_{0} be an a-point of f with
multiplicity p and an a-point of g with multiplicity q. We denote by $\bar{N}_{L}(r, a ; f)$ the reduced counting function of those a-points of f where $p>q$ and by $N_{E}^{1)}(r, a ; f)$ the counting function of those a-points of f where $p=q=1$. Also by $N_{E}^{(2}(r, a ; f)$ we denote the counting function of those a-points of f where $p=q \geq 2$.
$\bar{N}_{L}(r, a ; g), N_{E}^{1)}(r, a ; g)$ and $N_{E}^{(2}(r, a ; g)$ are defined analogously.
Clearly $N_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$.
Definition 7. Let $a, b \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid g=b)$ the counting function of those a-points of f, counted according to multiplicity, which are b-points of g.

Definition 8. Let $a, b_{1}, b_{2}, \cdots, b_{q} \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid g \neq$ $b_{1}, b_{2}, \cdots, b_{q}$) the counting function of those a-points of f, counted according to multiplicity, which are not the b_{i}-points of g for $i=1,2, \cdots, q$.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be two nonconstant meromorphic functions defined in \mathbb{C}. Henceforth we shall denote by H and V the following two functions

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) .
$$

and

$$
V=\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)-\left(\frac{G^{\prime}}{G-1}-\frac{G^{\prime}}{G}\right)=\frac{F^{\prime}}{F(F-1)}-\frac{G^{\prime}}{G(G-1)} .
$$

Lemma 1 ([10]). If F, G share $(1,0)$ and $H \not \equiv 0$ then

$$
N_{E}^{1)}(r, 1 ; F) \leq N(r, H)+S(r, F)+S(r, G) .
$$

Lemma 2 ([4]). The following holds

$$
N\left(r, 0 ; F^{\prime} \mid F \neq 0\right) \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+S(r, F)
$$

Lemma 3. If F and G share $(1,0)$ then

$$
\begin{aligned}
T(r, F) \leq & N_{E}^{1}(r, 1 ; F)+2 \bar{N}(r, 0 ; F)+2 \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G) \\
& +\bar{N}(r, \infty ; G)-2 N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G),
\end{aligned}
$$

where $N_{0}\left(r, 0 ; F^{\prime}\right)$ is the counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$ and $N_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined.

Proof. In view of Lemma 2 we get

$$
\begin{aligned}
\bar{N}(r, 1 ; F)= & N_{E}^{1)}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{E}^{(2}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G) \\
\leq & N_{E}^{1)}(r, 1 ; F)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, 1 ; G \mid \geq 2) \\
\leq & N_{E}^{1)}(r, 1 ; F)+N\left(r, 0 ; F^{\prime} \mid F=1\right)+N\left(r, 0 ; G^{\prime} \mid G=1\right) \\
\leq & N_{E}^{1)}(r, 1 ; F)+N\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+N\left(r, 0 ; G^{\prime} \mid G \neq 0\right) \\
& -N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right) \\
\leq & N_{E}^{1)}(r, 1 ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G) \\
& +\bar{N}(r, \infty ; G)-N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F) \\
& +S(r, G) .
\end{aligned}
$$

So by the second fundamental theorem we obtain

$$
\begin{aligned}
T(r, F) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 1 ; F)-N_{0}\left(r, 0 ; F^{\prime}\right)+S(r, F) \\
\leq & N_{E}^{1 \prime}(r, 1 ; F)+2 \bar{N}(r, 0 ; F)+2 \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G) \\
& +\bar{N}(r, \infty ; G)-2 N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F) \\
& +S(r, G) .
\end{aligned}
$$

This proves the lemma.
Lemma 4. If F, G share $(1,0),(\infty, 0)$ and $H \not \equiv 0$ then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}_{*}(r, \infty ; F, G)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right),
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined.
Proof. We can easily verify that possible poles of H occur at
(i) multiple zeros of F and G,
(ii) those poles of F and G whose multiplicities are distinct from the multiplicities of the corresponding poles of G and F respectively,
(iii) those 1-points of F and G whose multiplicities are distinct from the multiplicities of the corresponding 1-points of G and F respectively,
(iv) zeros of F^{\prime} which are not the zeros of $F(F-1)$,
(v) zeros of G^{\prime} which are not zeros of $G(G-1)$.

Since H has only simple poles, the lemma follows from above. This proves the lemma.

Lemma 5 ([7]). If $H \equiv 0$ then $T(r, G)=T(r, F)+O(1)$. Also if $H \equiv 0$ and

$$
\limsup _{r \longrightarrow \infty}^{r \in I}<\frac{\bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)}{T(r, F)}<1
$$

where $I \subset(0, \infty)$ is a set of infinite linear measure, then $F \equiv G$ or $F . G \equiv 1$.
Remark 1. Let $F=f^{n}$ and $G=g^{n}$, where $n(\geq 5)$ is an integer. If $H \equiv 0$ then from Lemma 5 it follows that f and g satisfy one of (1) and (2).
Lemma 6 ([9]). If F, G share $(\infty, 0)$ and $V \equiv 0$ then $F \equiv G$.
Lemma 7. Let $F=f^{n}, G=g^{n}$ and $V \not \equiv 0$. If f, g share (∞, k), where $0 \leq k<\infty$, then the poles of F and G are the zeros of V and

$$
(n k+n-1) \bar{N}(r, \infty ; f \mid \geq k+1) \leq N(r, \infty ; V)+S(r, f)+S(r, g)
$$

Proof. Since f, g share (∞, k), it follows that F, G share $(\infty, n k)$ and so a pole of F with multiplicity $p(\geq n k+1)$ is a pole of G with multiplicity $r(\geq n k+1)$ and viceversa. Noting that F and G have no pole of multiplicity q where $n k<q<n k+n$, we get from the definition of V

$$
\begin{aligned}
(n k+n-1) \bar{N}(r, \infty ; f \mid \geq k+1) & =(n k+n-1) \bar{N}(r, \infty ; F \mid \geq n k+n) \\
& \leq N(r, 0 ; V) \\
& \leq N(r, \infty ; V)+S(r, f)+S(r, g)
\end{aligned}
$$

Lemma 8. Let $F=f^{n}, G=g^{n}$ and $V \not \equiv 0$. If f, g share (∞, k), where $0 \leq k<\infty$, and F, G share $(1,0)$ then

$$
\begin{aligned}
(n k+n-1) \bar{N}(r, \infty ; f \mid \geq k+1) \leq & 2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+2 \bar{N}(r, \infty ; f) \\
& -N\left(r, 0 ; f^{\prime} \mid f \neq 0,1, \omega, \cdots, \omega^{n-1}\right) \\
& -N\left(r, 0 ; g^{\prime} \mid g \neq 0,1, \omega, \cdots, \omega^{n-1}\right) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Proof. From the definition of V and Lemma 2 it follows that

$$
\begin{aligned}
N(r, \infty ; V) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}_{*}(r, 1 ; F, G) \\
\leq & \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, 1 ; G \mid \geq 2) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+N\left(r, 0 ; F^{\prime} \mid F=1\right)+N\left(r, 0 ; G^{\prime} \mid G=1\right) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+N\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+N\left(r, 0 ; G^{\prime} \mid G \neq 0\right) \\
& -N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right) \\
\leq & 2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+2 \bar{N}(r, \infty ; f)-N_{0}\left(r, 0 ; F^{\prime}\right) \\
& -N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Noting that $N_{0}\left(r, 0 ; F^{\prime}\right)=N\left(r, 0 ; f^{\prime} \mid f \neq 0,1, \omega, \cdots, \omega^{n-1}\right)$ and $N_{0}\left(r, 0 ; G^{\prime}\right)=$ $N\left(r, 0 ; g^{\prime} \mid g \neq 0,1, \omega, \cdots, \omega^{n-1}\right)$, the lemma follows from above and Lemma 7. This proves the lemma.
Lemma 9. Let $F=f^{n}, G=g^{n}$ and $V \not \equiv 0$. If f, g share $(\infty, 0)$ and F, G share $(1, k)$, where $1 \leq k \leq \infty$, then

$$
\begin{aligned}
\left(n-1-\frac{1}{k}\right) \bar{N}(r, \infty ; f) \leq & \frac{k+1}{k} \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g) \\
& -\frac{1}{k} N\left(r, 0 ; f^{\prime} \mid f \neq 0,1, \omega, \cdots, \omega^{n-1}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Proof. From the definition of V and Lemma 2 we get

$$
\begin{aligned}
N(r, \infty ; V) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}_{*}(r, 1 ; F, G) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, 1 ; F \mid \geq k+1) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\frac{1}{k} N\left(r, 0 ; F^{\prime} \mid F=1\right) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\frac{1}{k} N\left(r, 0 ; F^{\prime} \mid F \neq 0\right)-\frac{1}{k} N_{0}\left(r, 0 ; F^{\prime}\right) \\
\leq & \frac{k+1}{k} \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\frac{1}{k} \bar{N}(r, \infty ; f) \\
& -\frac{1}{k} N\left(r, 0 ; f^{\prime} \mid f \neq 0,1, \omega, \cdots, \omega^{n-1}\right)+S(r, f) .
\end{aligned}
$$

Combining this with Lemma 7 and noting that f, g share $(\infty, 0)$, the lemma is proved. This proves the lemma.
Lemma 10 ([2]). If F, G share $(1,2)$ then

$$
\begin{aligned}
& \bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \\
\leq & \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+S(r, G) .
\end{aligned}
$$

3. Proofs of the theorems

Proof of Theorem 1. Let $F=f^{n}, G=g^{n}$ and f, g do not satisfy (1). Since $E_{f}\left(S_{1}, 2\right)=E_{g}\left(S_{1}, 2\right)$ and $E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$, it follows that F, G share $(1,2)$ and $(\infty, 0)$. If possible, we suppose that $H \not \equiv 0$. Then by the second fundamental theorem, Lemma 1, 4 and 10 and noting that $N_{E}^{1)}(r, 1 ; F)=N(r, 1 ; F \mid=1)$ we obtain

$$
\begin{align*}
T(r, F) \leq & \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, 1 ; F)-N_{0}\left(r, 0 ; F^{\prime}\right)+S(r, F) \tag{3}\\
\leq & \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2) \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{*}(r, \infty ; F, G)+\bar{N}(r, 1 ; G \mid \geq 2) \\
& +\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)-N_{0}\left(r, 0 ; F^{\prime}\right)+S(r, F) \\
\leq & 2 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, 0 ; G) \\
& +\bar{N}(r, \infty ; G)+S(r, F)+S(r, G) \\
= & 3 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+S(r, f)+S(r, g)
\end{align*}
$$

Since $F \not \equiv G$ we get by Lemma 6 that $V \not \equiv 0$. So by Lemma 9 for $k=2$ we get from (3)

$$
\begin{align*}
n T(r, f) \leq & \frac{6}{2 n-3}\left[\frac{3}{2} \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)\right]+2 \bar{N}(r, 0 ; f) \tag{4}\\
& +2 \bar{N}(r, 0 ; g)+S(r, f)+S(r, g) \\
\leq & \frac{4 n+3}{2 n-3} T(r, f)+\frac{4 n}{2 n-3} T(r, g)+S(r, f)+S(r, g)
\end{align*}
$$

Similarly we obtain

$$
\begin{equation*}
n T(r, g) \leq \frac{4 n}{2 n-3} T(r, f)+\frac{4 n+3}{2 n-3} T(r, g)+S(r, f)+S(r, g) \tag{5}
\end{equation*}
$$

Adding (4) and (5) we get

$$
\frac{2 n^{2}-11 n-3}{2 n-3}\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction for $n \geq 6$.
Hence $H \equiv 0$ and so by Lemma 5 and Remark 1 the theorem is proved. This proves the theorem.

Proof of Theorem 2. Let $F=f^{n}, G=g^{n}$ and f, g do not satisfy (1). Since $E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right)$ and $E_{f}\left(S_{2}, 3\right)=E_{g}\left(S_{2}, 3\right)$, it follows that F, G share $(1,0)$ and $(\infty, 3 n)$. If possible, we suppose that $H \not \equiv 0$. Then by Lemmas $1,2,3$ and 4
we get

$$
\begin{aligned}
T(r, F) \leq & N_{E}^{1)}(r, 1 ; F)+2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g) \\
& -2 N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f \mid \geq 4)+\bar{N}_{*}(r, 1 ; F, G)+2 \bar{N}(r, 0 ; f) \\
& +2 \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \\
\leq & 3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+3 \bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; f \mid \geq 4) \\
& +\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, 1 ; G \mid \geq 2)+S(r, f)+S(r, g) \\
\leq & 3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+3 \bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; f \mid \geq 4) \\
& +N\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+N\left(r, 0 ; G^{\prime} \mid G \neq 0\right)+S(r, f)+S(r, g) \\
\leq & 4 \bar{N}(r, 0 ; f)+3 \bar{N}(r, 0 ; g)+5 \bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; f \mid \geq 4) \\
& +S(r, f)+S(r, g) .
\end{aligned}
$$

Since $F \not \equiv G$, by Lemma 6 we get $V \not \equiv 0$. So by Lemma 8 for $k=3$ we get from above
(6) $n T(r, f) \leq 4 \bar{N}(r, 0 ; f)+3 \bar{N}(r, 0 ; g)+5 \bar{N}(r, \infty ; f)$

$$
+\frac{1}{4 n-1}\{2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+2 \bar{N}(r, \infty ; f)\}
$$

$$
+S(r, f)+S(r, g)
$$

$$
\leq\left(4+\frac{2}{4 n-1}\right) \bar{N}(r, 0 ; f)+\left(3+\frac{2}{4 n-1}\right) \bar{N}(r, 0 ; g)
$$

$$
+\frac{2}{n-3}\left(5+\frac{2}{4 n-1}\right)\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)\}
$$

$$
+S(r, f)+S(r, g)
$$

$$
\leq\left\{4+\frac{42 n-12}{(n-3)(4 n-1)}\right\} T(r, f)+\left\{3+\frac{42 n-12}{(n-3)(4 n-1)}\right\} T(r, g)
$$

$$
+S(r, f)+S(r, g)
$$

Similarly we obtain
(7) $n T(r, g) \leq\left\{3+\frac{42 n-12}{(n-3)(4 n-1)}\right\} T(r, f)+\left\{4+\frac{42 n-12}{(n-3)(4 n-1)}\right\} T(r, g)$

$$
+S(r, f)+S(r, g)
$$

Adding (6) and (7) we get

$$
\left\{n-7-\frac{84 n-24}{(n-3)(4 n-1)}\right\}\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction for $n \geq 10$.
Hence $H \equiv 0$ and so by Lemma 5 and Remark 1 the theorem follows. This proves the theorem.

References

[1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[2] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46(2001), 241-253.
[3] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
[4] I. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26(2003), 95-100.
[5] G. D. Song and N. Li, On a problem of Gross concerning unicity of meromorphic functions, Chinese Ann. Math., 17A(1996), 189-194.
[6] H. X. Yi, Unicity theorems for entire functions, Kodai Math. J., 17(1994), 133-141.
[7] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl., 28(1995), 1-11.
[8] H. X. Yi, Uniqueness theorems for meromorphic functions II, Indian J. Pure Appl. Math., 28(1997), 509-519.
[9] H. X. Yi, Meromorphic functions that share three sets, Kodai Math. J., 20(1997), 22-32.
[10] H. X. Yi and L. Z. Yang, Meromorphic functions that share two sets, Kodai Math. J., 20(1997), 127-134.

