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ABSTRACT. Using the notion of weighted sharing of sets we improve two results of H. X.
Yi on uniqueness of meromorphic functions.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a € CU {oo}, f and g have the same set of a-points
with same multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are said
to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of CU{oo} and Ef(S) = Uges{z : f(2) —a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set Uges{z : f(2) —a = 0} is denoted by Ef(S).

In the paper we denote by S and S the following sets S; = {1, w,w?, -+ ,w" 1}
and Sy = {oco}, where w = 00527:“ + isin%’r and n is a positive integer.

Yi ([6], [8]), Song-Li ([5]) and other authors investigate the problem of unique-
ness of two meromorphic functions f, g for which E;(S;) = E4(S;) or E¢(S;) =
E4(S;), where i = 1, 2.

In 1997 H. X. Yi and L. Z. Yang proved the following two results.

Theorem A ([10]). Let f and g be two nonconstant meromorphic functions such
that E¢(S1) = E4(S1) and E¢(S2) = E4(S2). If n > 6 then one of the following
hold:

(1) f=tg,
where t" =1,
(2) f9=s,
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where s™ =1 and 0, co are lacunary values of f and g.

Theorem B (LlO]) Let f and g be two monconstant meromorphic functions such
that E¢(S1) = E4(S1) and E¢(S2) = E4(S2). If n > 10 then f and g satisfy (1) or
(2).

In the paper, we investigate the possibility of improving Theorem A and B by
relaxing the nature of sharing the sets. To this end we employ the idea of weighted
sharing of values and sets introduced in [2], [3] which measures how close a shared
value is to being shared IM or to being shared CM. In the following definition we
explain this notion.

Definition 1 ([2], [3]). Let k be a nonnegative integer or infinity. For a € CU{cc}
we denote by Ey(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m < k and k + 1 times if m > k. If Ex(a; f) = Ex(a;9),
we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a,k) then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a, o)
respectively.

Definition 2 ([3]). Let S be a set of distinct elements of C U {oco} and k be a
nonnegative integer or co. We denote by Ef(S, k) the set UgesEx(a; f).

Clearly E¢(S) = Ef(S,00) and E¢(S) = E¢(S,0).
We now state the main results of the paper.

Theorem 1. If E¢(S1,2) = E4(51,2), E¢(S2,0) = E¢(S2,0) and n > 6 then f, g
satisfy one of (1) and (2).

Theorem 2. If E;(S1,0) = E4(S1,0), Ef(S2,3) = E4(S2,3) and n > 10 then f, g
satisfy one of (1) and (2).

Though for the standard definitions and notations of the value distribution
theory we refer to [1], we now explain some notations which are used in the paper.

Definition 3 ([2], [3]). We denote by N(r,a;f| = 1) the counting function of
simple a-points of f.

Definition 4 ([2], [3]). If s is a positive integer, we denote by N(r,a; f| > s) the
reduced counting function of those a points of f whose multiplicities are not less
than s.

Definition 5 ([2], [3]). Let f, g share a value a IM. We denote by N.(r,a; f,9)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly N*(T, a; f7g) = N*(ﬂ as g, f)
Definition 6 ([10]). Let f, g share a value a IM. Let 2y be an a-point of f with
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multiplicity p and an a-point of g with multiplicity ¢. We denote by N (r,a; f) the
reduced counting function of those a-points of f where p > ¢ and by N }E)(r,a; )
the counting function of those a-points of f where p = ¢ = 1. Also by Ng(r, a; f)
we denote the counting function of those a-points of f where p = ¢ > 2.
Ni(r,a;g), N}E) (r,a;g) and Ng (r,a; g) are defined analogously.
Clearly N.(r,a; f,g) = Np(r,a; f) + Np(r,a;g9).

Definition 7. Let a, b € CU {oco}. We denote by N(r,a; f| g = b) the counting
function of those a-points of f, counted according to multiplicity, which are b-points
of g.

Definition 8. Let a,by, by, -+ ,by € C U {oo}. We denote by N(r,a;f| g #
bi,ba, - ,by) the counting function of those a-points of f, counted according to
multiplicity, which are not the b;-points of g for i =1,2,--- | q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined in C. Henceforth we
shall denote by H and V the following two functions

1" ’ 1"

F'  2F G 2@
H=F 5@ &1
and ) ,
FF & ¢ F' ¢

V==~ F)_(G—l_ﬁ):F(F—U_G(G—l)'

Lemma 1 ([10]). If F, G share (1,0) and H # 0 then

NP(r,1;F) < N(r,H) + S(r, F) + S(r, G).

Lemma 2 ([4]). The following holds

N(r,0; F'[F #0) < N(r,00; F) + N(r,0; F) + S(r, F).

Lemma 3. If F' and G share (1,0) then
T(r,F) < NY(r1;F)+2N(r,0;F)+2N(ro0; F) + N(r,0;G)
+ N(r,00;G) — 2 No(T,O;FI) - NO(T,O;G/) +S(r, F)+ S(r,GQ),

where NO(nO;F/) is the counting function of those zeros of F' which are not the
zeros of F(F — 1) and No(r,0; G ) is similarly defined.
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Proof. In view of Lemma 2 we get

N(r1;F) = NY(@1L,F)+No(r1;F) + Ne(r,1;F) + Ni(r,1;G)
< N1 F)+ N1 Fl > 2) + N 1,6 > 2)
< ND(RLF)+ N0 F|F=1)+ N(r0;G| G =1)
< NP(nLF)+N(r0;F|F #£0)+ N(r,0;G| G #0)
—No(r,0; F') = No(r,0;G')
< NY(r1;F) + N(r,0; F) + N(r,00; F) + N(r,0; G)

+N(r,00;G) — No(r,0; F') — No(r,0,G ) + S(r, F)
+S(r,G).

So by the second fundamental theorem we obtain

T(r,F) < N(r,0;F)+N(r,00;F) + N(r,1;F) — No(r,0; F') + S(r, F)
< NP (r,1;F)+2N(r,0,F) + 2 N(r,00; F) + N(r,0; G)
+N(r,00;G) — 2 No(r,0; F') = No(r,0;G') + S(r, F)
+S(r, G).
This proves the lemma. O

Lemma 4. If F, G share (1,0), (00,0) and H # 0 then
N(r,H) < N(r,0;F>2)+N(r,0;Gl>2) + N.(r,1; F,G)
+N.(r,00; F,G) 4+ No(r,0; F') + No(r,0;G'),

where No(T,O;FI) is the reduced counting function of those zeros of F' which are
not the zeros of F(F — 1) and No(r,0; G/) is similarly defined.

Proof. We can easily verify that possible poles of H occur at
(i) multiple zeros of F and G,

(ii) those poles of F' and G whose multiplicities are distinct from the multiplicities
of the corresponding poles of G and F' respectively,

(iii) those 1-points of F and G whose multiplicities are distinct from the multi-
plicities of the corresponding 1-points of G and F' respectively,

(iv) zeros of F' which are not the zeros of F(F — 1),
(v) zeros of G which are not zeros of G(G — 1).

Since H has only simple poles, the lemma follows from above. This proves the
lemma. U
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Lemma 5 ([7]). If H =0 then T(r,G) =T(r,F) + O(1). Also if H=0 and

. N(r,0; F) + N(r,00; F) + N(r,0; G) + N(r, 00; G)
lim sup

r—00 T(T, F)

rel

<1

where I C (0,00) is a set of infinite linear measure, then F = G or F.G = 1.

Remark 1. Let F = f" and G = ¢", where n (> 5) is an integer. If H = 0 then
from Lemma 5 it follows that f and g satisfy one of (1) and (2).

Lemma 6 ([9]). If F, G share (00,0) and V =0 then F = G.

Lemma 7. Let F = f*, G =¢g" andV £ 0. If f, g share (00, k), where 0 < k < oo,
then the poles of I' and G are the zeros of V' and

Proof. Since f, g share (00, k), it follows that F', G share (0o, nk) and so a pole of F’
with multiplicity p (> nk+1) is a pole of G with multiplicity r (> nk+1) and vice-
versa. Noting that F' and G have no pole of multiplicity ¢ where nk < ¢ < nk +n,
we get from the definition of V

(nk+n—1)N(r,o0; fl>k+1) = (nk+n—1)N(r,o0; F| > nk+n)
< N(r,0;V)
< N(r,000V) +S(r, f) + 5(r, 9)-

O

Lemma 8. Let F = f", G =g" and V £ 0. If f,g share (o0, k), where 0 < k < oo,
and F, G share (1,0) then

(nk+mn—1) N(r,o0; f]>k+1) < 2N(r,0;f)+2N(r0;9) + 2 N(r,oc0; f)
N0 ff #0, 1w, 0"

N(T,O;g/b #0,1,w,--,w" 1)

+S(r, f) + S(r, g).
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Proof. From the definition of V' and Lemma 2 it follows that

N(r,o0; V) 7,0; F) + N(r,0;G) + N.(r,1; F, G)

r,0; F)+ N(r,0;G) + Np(r,1;F) + N1(r,1;G)

r,0; f) + N(r,0;9) + N(r,1; F| > 2) + N(r, 1, G| > 2)
r,O;f)+N(r,0;g)+N(r70;F/‘F: 1)+N(7’,0;G/‘G: 1)
(r,O;f)JrN(r,O;g)+N(r,O;F/‘F#O)JrN(r,O;G"G?éO)
—No(r,0;F') = No(r, 0; &)

2 N(r,0; f) +2 N(r,0;9) + 2 N(r,00; f) — No(r,0; F”)
~No(r,0:G") + 5(r. f) + 5(r9).

Noting that N()(?",O;F/) = N(T,O;f/ f#0,1w,- 0w 1) and No(T,O;G/) =
N(r, O;g/‘ g#0, 1w, ,w" 1), the lemma follows from above and Lemma 7. This
proves the lemma. O

VAN VAN VAN VAR VAN
2 2| 2l = =

IN

Lemma 9. Let F = f*, G=g¢" and V £ 0. If f, g share (00,0) and F, G share
(1,k), where 1 <k < o0, then

1. — k+1

(n—1- 1) N(rooif) < ——

1

k

Proof. From the definition of V' and Lemma 2 we get

N(r,0; f) + N(r,0;9)

o

N(T70;f,‘f750717w7"' ,wn_l)-i-S(’l”,f)—i-S(T,g).

N(r,o00; V) (r,0; F) + N(r,0;G) + N.(r, 1, F,G)
(r,0; f) + N(r,0;g) + N(r, 1;F‘ >k+1)

__ . 1 ,
N(r,0: ) + N(r,0:9) + 3 NG 0 F| F =1)

N
N

IAIA

IN

IN

_ —_ 1 7 1 !
N(T,O;f)+N(T70;9)+*N(T,O;F‘F#O)— —No(r,0; F")

k k
kE+1— — 1 —
TN(ﬂO;f)"‘N(T,O;Q)‘F%N(ﬂOO;f)

_% N(T‘?O;fl‘f?é()al)wa"' 7wn71)+S(Taf)'

IN

Combining this with Lemma 7 and noting that f,g share (co,0), the lemma is
proved. This proves the lemma. 0

Lemma 10 ([2]). If F', G share (1,2) then

No(r,0:G)+ N(r,1;G| > 2) + N.(r, 1 F, G)
< N(r,0;G) + N(r,00; G) + 5(r, G).
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3. Proofs of the theorems

Proof of Theorem 1. Let F' = f", G = g™ and f, g do not satisfy (1). Since
E¢(51,2) = E4(S1,2) and Ef(S2,0) = E4(S2,0), it follows that F', G share (1,2)
and (00, 0). If possible, we suppose that H # 0. Then by the second fundamental
theorem, Lemma 1, 4 and 10 and noting that N; (r,1;F) = N(r, 1;F‘ = 1) we
obtain

r,00; F) + N(r,0; F) + N(r,1; F) — NO(T,O;F/) +S(r, F)
7,005 f) + N(r,0; f) + N(r,0; F| > 2) + N(r,0;G| > 2)

(r,1; F,G) + N, (r,00; F,G) + N(r,1; G| > 2)
O(T,O;F/) —l—No(r,O;G/) - NU(T,O;F/) +S(r, F)
(r,00; f) +2 N(r,0; f) + N(r,0; g) + N(r,0; G)
(r,o00;G)+ S(r, F) + S(r,G)
(r,00; f) +2 N(r,0; f) + 2 N(r,05g) + S(r, f) + S(r, 9)-

(3) T(r,F) N
N

(
(

INIA

+

IN

N.
+N
2N
+N
3N

Since F' # G we get by Lemma 6 that V # 0. So by Lemma 9 for &k = 2 we get
from (3)

@ aTEf) £ 2 [ NG00 + N0 0:g) +2 N0 )
+2 N(r,0;9) + S(r, f) + S(r, g)
< SER T ) 45 Tlrg) + 50 )+ 5(r,0).
Similarly we obtain
(6)  nT0g) <5 T D) + 5 Tlrg) + 50 f) + S(r,9).

Adding (4) and (5) we get

2n2 —11n—3

T )+ T(,9)} < () + S(r,9),

which is a contradiction for n > 6.

Hence H = 0 and so by Lemma 5 and Remark 1 the theorem is proved. This
proves the theorem:. O

Proof of Theorem 2. Let F = f", G = g™ and f, g do not satisfy (1). Since
E¢(51,0) = E4(S1,0) and E¢(S2,3) = E4(S2,3), it follows that F', G share (1,0)
and (oo, 3n). If possible, we suppose that H #Z 0. Then by Lemmas 1, 2, 3 and 4
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we get
T(r, F) < Né)(r, 1;F)+2N(r,0;f)+2 N(r,00; f) + N(r,0;9) + N(r,00; g)
—2 Ny(r, 0; F') — No(r, 0; G') +S(r, F)+ S(r,G)
N(r,0; f) + N(r,0;9) + N(r,00; f| > 4) + N.(r, 1; F,G) + 2 N(r,0; f)
+2 N(r,00; f) + N(r,0; 9) + N(r,00; g) + S(r, f) + S(r, 9)
3N(r,0; f) +2 N(r,0; 9) + 3 N(r,00; f) + N(r, 00; f| > 4)
+N(r, 1, F|>2) + N(r,1;G| > 2) + S(r, f) + S(r, 9)
3N(r,0; f) +2 N(r,0;9) + 3 N(r,00; f) + N(r,00; | > 4)
(
N(

IN

IN

IN

+N T,O;FI‘F #£0) + N(T,O;G,‘G #0)+ S(r, f)+ S(r,9)
< 4 N(r,0;f)+3N(r,0;9) +5 N(r,00; f) + N(r,00; f| > 4)
+S(r, f)+ S(r,g).
Since F' # G, by Lemma 6 we get V' #£ 0. So by Lemma 8 for k¥ = 3 we get from
above

6) nT(r,f) < 4N(r0;f)+3N(r0;9)+5N(r o0;f)

+ {2 V(05 ) + 2 N(r,05.9) + 2 N(r, 00; f)}
+S(r, f)+ S(r,9)
< @+ =) N0 )+ B+ —F) N(r,0:9)
b2 (5 o) (NG 0: ) + N, 05}
+S(r, f) + S(r,9)
42n — 12 42n — 12
< M*‘m}ﬂﬂf)‘*‘@‘i‘m}ﬂﬂg)

+S(r, f)+ S(r,g).
Similarly we obtain
42n — 12 42n — 12
ST L A T T
+S(r, f)+ S(r,g)-
Adding (6) and (7) we get
84n — 24
(n—3)(4n —1)
which is a contradiction for n > 10.

Hence H = 0 and so by Lemma 5 and Remark 1 the theorem follows. This
proves the theorem. O

(M nT(rg) < {3+ T(r,g)

fn—7- HT(r, 1)+ T(r,9)} < S(r, )+ 5(r,9),



Weighted Sharing of Two Sets 87

References

[1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).

[2] 1. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex
Variables Theory Appl., 46(2001), 241-253.

[3] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math.
J., 161(2001), 193-206.

[4] 1. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function
and its deriwative, Kodai Math. J., 26(2003), 95-100.

[5] G. D. Song and N. Li, On a problem of Gross concerning unicity of meromorphic
functions, Chinese Ann. Math., 17A(1996), 189-194.

[6] H. X. Yi, Unicity theorems for entire functions, Kodai Math. J., 17(1994), 133-141.

[7] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables
Theory Appl., 28(1995), 1-11.

[8] H. X. Yi, Uniqueness theorems for meromorphic functions II, Indian J. Pure Appl.
Math., 28(1997), 509-519.

[9] H. X. Yi, Meromorphic functions that share three sets, Kodai Math. J., 20(1997),
22-32.

[10] H. X. Yi and L. Z. Yang, Meromorphic functions that share two sets, Kodai Math.
J., 20(1997), 127-134.



