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Abstract. Using the notion of weighted sharing of sets we improve two results of H. X.

Yi on uniqueness of meromorphic functions.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with same multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are said
to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of C∪{∞} and Ef (S) = ∪a∈S{z : f(z)−a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set ∪a∈S{z : f(z)− a = 0} is denoted by Ef (S).

In the paper we denote by S1 and S2 the following sets S1 = {1, ω, ω2, · · · , ωn−1}
and S2 = {∞}, where ω = cos 2π

n + isin2π
n and n is a positive integer.

Yi ([6], [8]), Song-Li ([5]) and other authors investigate the problem of unique-
ness of two meromorphic functions f , g for which Ef (Si) = Eg(Si) or Ef (Si) =
Eg(Si), where i = 1, 2.

In 1997 H. X. Yi and L. Z. Yang proved the following two results.

Theorem A ([10]). Let f and g be two nonconstant meromorphic functions such
that Ef (S1) = Eg(S1) and Ef (S2) = Eg(S2). If n ≥ 6 then one of the following
hold:

(1) f ≡ tg,

where tn = 1,

(2) f.g ≡ s,
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where sn = 1 and 0, ∞ are lacunary values of f and g.

Theorem B ([10]). Let f and g be two nonconstant meromorphic functions such
that Ef (S1) = Eg(S1) and Ef (S2) = Eg(S2). If n ≥ 10 then f and g satisfy (1) or
(2).

In the paper, we investigate the possibility of improving Theorem A and B by
relaxing the nature of sharing the sets. To this end we employ the idea of weighted
sharing of values and sets introduced in [2], [3] which measures how close a shared
value is to being shared IM or to being shared CM. In the following definition we
explain this notion.

Definition 1 ([2], [3]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 2 ([3]). Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

We now state the main results of the paper.

Theorem 1. If Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0) and n ≥ 6 then f , g
satisfy one of (1) and (2).

Theorem 2. If Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3) and n ≥ 10 then f , g
satisfy one of (1) and (2).

Though for the standard definitions and notations of the value distribution
theory we refer to [1], we now explain some notations which are used in the paper.

Definition 3 ([2], [3]). We denote by N(r, a; f = 1) the counting function of
simple a-points of f .

Definition 4 ([2], [3]). If s is a positive integer, we denote by N(r, a; f ≥ s) the
reduced counting function of those a points of f whose multiplicities are not less
than s.

Definition 5 ([2], [3]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).

Definition 6 ([10]). Let f , g share a value a IM. Let z0 be an a-point of f with
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multiplicity p and an a-point of g with multiplicity q. We denote by NL(r, a; f) the
reduced counting function of those a-points of f where p > q and by N

1)
E (r, a; f)

the counting function of those a-points of f where p = q = 1. Also by N
(2
E (r, a; f)

we denote the counting function of those a-points of f where p = q ≥ 2.
NL(r, a; g), N

1)
E (r, a; g) and N

(2
E (r, a; g) are defined analogously.

Clearly N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Definition 7. Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f g = b) the counting
function of those a-points of f , counted according to multiplicity, which are b-points
of g.

Definition 8. Let a, b1, b2, · · · , bq ∈ C ∪ {∞}. We denote by N(r, a; f g 6=
b1, b2, · · · , bq) the counting function of those a-points of f , counted according to
multiplicity, which are not the bi-points of g for i = 1, 2, · · · , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined in C. Henceforth we
shall denote by H and V the following two functions

H = (
F
′′

F ′ −
2F

′

F − 1
)− (

G
′′

G′ −
2G

′

G− 1
).

and

V = (
F
′

F − 1
− F ′

F
)− (

G
′

G− 1
− G′

G
) =

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 1 ([10]). If F , G share (1, 0) and H 6≡ 0 then

N
1)
E (r, 1; F ) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2 ([4]). The following holds

N(r, 0; F
′
F 6= 0) ≤ N(r,∞;F ) + N(r, 0; F ) + S(r, F ).

Lemma 3. If F and G share (1, 0) then

T (r, F ) ≤ N
1)
E (r, 1; F ) + 2 N(r, 0;F ) + 2 N(r,∞; F ) + N(r, 0;G)

+ N(r,∞; G)− 2 N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r, F ) + S(r,G),

where N0(r, 0;F
′
) is the counting function of those zeros of F

′
which are not the

zeros of F (F − 1) and N0(r, 0; G
′
) is similarly defined.



82 I. Lahiri and A. Banerjee

Proof. In view of Lemma 2 we get

N(r, 1;F ) = N
1)
E (r, 1;F ) + NL(r, 1; F ) + N

(2

E (r, 1; F ) + NL(r, 1; G)

≤ N
1)
E (r, 1;F ) + N(r, 1; F ≥ 2) + N(r, 1;G ≥ 2)

≤ N
1)
E (r, 1;F ) + N(r, 0; F

′
F = 1) + N(r, 0; G

′
G = 1)

≤ N
1)
E (r, 1;F ) + N(r, 0; F

′
F 6= 0) + N(r, 0; G

′
G 6= 0)

−N0(r, 0; F
′
)−N0(r, 0; G

′
)

≤ N
1)
E (r, 1;F ) + N(r, 0; F ) + N(r,∞;F ) + N(r, 0; G)

+N(r,∞; G)−N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r, F )

+S(r,G).

So by the second fundamental theorem we obtain

T (r, F ) ≤ N(r, 0; F ) + N(r,∞;F ) + N(r, 1; F )−N0(r, 0; F
′
) + S(r, F )

≤ N
1)
E (r, 1; F ) + 2 N(r, 0; F ) + 2 N(r,∞;F ) + N(r, 0; G)

+N(r,∞;G)− 2 N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r, F )

+S(r,G).

This proves the lemma. ¤

Lemma 4. If F , G share (1, 0), (∞, 0) and H 6≡ 0 then

N(r,H) ≤ N(r, 0; F ≥ 2) + N(r, 0; G ≥ 2) + N∗(r, 1; F, G)

+N∗(r,∞; F, G) + N0(r, 0;F
′
) + N0(r, 0; G

′
),

where N0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0; G
′
) is similarly defined.

Proof. We can easily verify that possible poles of H occur at

(i) multiple zeros of F and G,

(ii) those poles of F and G whose multiplicities are distinct from the multiplicities
of the corresponding poles of G and F respectively,

(iii) those 1-points of F and G whose multiplicities are distinct from the multi-
plicities of the corresponding 1-points of G and F respectively,

(iv) zeros of F
′
which are not the zeros of F (F − 1),

(v) zeros of G
′
which are not zeros of G(G− 1).

Since H has only simple poles, the lemma follows from above. This proves the
lemma. ¤
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Lemma 5 ([7]). If H ≡ 0 then T (r,G) = T (r, F ) + O(1). Also if H ≡ 0 and

lim sup
r−→∞

N(r, 0; F ) + N(r,∞; F ) + N(r, 0;G) + N(r,∞;G)
T (r, F )

< 1

r ∈ I

where I ⊂ (0,∞) is a set of infinite linear measure, then F ≡ G or F.G ≡ 1.

Remark 1. Let F = fn and G = gn, where n (≥ 5) is an integer. If H ≡ 0 then
from Lemma 5 it follows that f and g satisfy one of (1) and (2).

Lemma 6 ([9]). If F , G share (∞, 0) and V ≡ 0 then F ≡ G.

Lemma 7. Let F = fn, G = gn and V 6≡ 0. If f , g share (∞, k), where 0 ≤ k < ∞,
then the poles of F and G are the zeros of V and

(nk + n− 1) N(r,∞; f ≥ k + 1) ≤ N(r,∞;V ) + S(r, f) + S(r, g).

Proof. Since f , g share (∞, k), it follows that F , G share (∞, nk) and so a pole of F
with multiplicity p (≥ nk+1) is a pole of G with multiplicity r (≥ nk+1) and vice-
versa. Noting that F and G have no pole of multiplicity q where nk < q < nk + n,
we get from the definition of V

(nk + n− 1) N(r,∞; f ≥ k + 1) = (nk + n− 1) N(r,∞;F ≥ nk + n)
≤ N(r, 0; V )
≤ N(r,∞; V ) + S(r, f) + S(r, g).

¤

Lemma 8. Let F = fn, G = gn and V 6≡ 0. If f ,g share (∞, k), where 0 ≤ k < ∞,
and F , G share (1, 0) then

(nk + n− 1) N(r,∞; f ≥ k + 1) ≤ 2 N(r, 0; f) + 2 N(r, 0; g) + 2 N(r,∞; f)

−N(r, 0; f
′
f 6= 0, 1, ω, · · · , ωn−1)

−N(r, 0; g
′
g 6= 0, 1, ω, · · · , ωn−1)

+S(r, f) + S(r, g).
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Proof. From the definition of V and Lemma 2 it follows that

N(r,∞; V ) ≤ N(r, 0; F ) + N(r, 0;G) + N∗(r, 1; F, G)
≤ N(r, 0; F ) + N(r, 0;G) + NL(r, 1;F ) + NL(r, 1; G)
≤ N(r, 0; f) + N(r, 0; g) + N(r, 1; F ≥ 2) + N(r, 1;G ≥ 2)

≤ N(r, 0; f) + N(r, 0; g) + N(r, 0; F
′
F = 1) + N(r, 0; G

′
G = 1)

≤ N(r, 0; f) + N(r, 0; g) + N(r, 0; F
′
F 6= 0) + N(r, 0; G

′
G 6= 0)

−N0(r, 0;F ′)−N0(r, 0; G
′
)

≤ 2 N(r, 0; f) + 2 N(r, 0; g) + 2 N(r,∞; f)−N0(r, 0; F ′)

−N0(r, 0;G
′
) + S(r, f) + S(r, g).

Noting that N0(r, 0; F
′
) = N(r, 0; f

′
f 6= 0, 1, ω, · · · , ωn−1) and N0(r, 0; G

′
) =

N(r, 0; g
′
g 6= 0, 1, ω, · · · , ωn−1), the lemma follows from above and Lemma 7. This

proves the lemma. ¤

Lemma 9. Let F = fn, G = gn and V 6≡ 0. If f , g share (∞, 0) and F , G share
(1, k), where 1 ≤ k ≤ ∞, then

(n− 1− 1
k

) N(r,∞; f) ≤ k + 1
k

N(r, 0; f) + N(r, 0; g)

−1
k

N(r, 0; f
′
f 6= 0, 1, ω, · · · , ωn−1) + S(r, f) + S(r, g).

Proof. From the definition of V and Lemma 2 we get

N(r,∞; V ) ≤ N(r, 0; F ) + N(r, 0; G) + N∗(r, 1; F,G)
≤ N(r, 0; f) + N(r, 0; g) + N(r, 1;F ≥ k + 1)

≤ N(r, 0; f) + N(r, 0; g) +
1
k

N(r, 0; F
′
F = 1)

≤ N(r, 0; f) + N(r, 0; g) +
1
k

N(r, 0; F
′
F 6= 0)− 1

k
N0(r, 0; F

′
)

≤ k + 1
k

N(r, 0; f) + N(r, 0; g) +
1
k

N(r,∞; f)

−1
k

N(r, 0; f
′
f 6= 0, 1, ω, · · · , ωn−1) + S(r, f).

Combining this with Lemma 7 and noting that f ,g share (∞, 0), the lemma is
proved. This proves the lemma. ¤

Lemma 10 ([2]). If F , G share (1, 2) then

N0(r, 0;G
′
) + N(r, 1;G ≥ 2) + N∗(r, 1; F, G)

≤ N(r, 0; G) + N(r,∞;G) + S(r,G).
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3. Proofs of the theorems

Proof of Theorem 1. Let F = fn, G = gn and f , g do not satisfy (1). Since
Ef (S1, 2) = Eg(S1, 2) and Ef (S2, 0) = Eg(S2, 0), it follows that F , G share (1, 2)
and (∞, 0). If possible, we suppose that H 6≡ 0. Then by the second fundamental
theorem, Lemma 1, 4 and 10 and noting that N

1)
E (r, 1; F ) = N(r, 1; F = 1) we

obtain

T (r, F ) ≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1;F )−N0(r, 0; F
′
) + S(r, F )(3)

≤ N(r,∞; f) + N(r, 0; f) + N(r, 0;F ≥ 2) + N(r, 0; G ≥ 2)
+N∗(r, 1; F, G) + N∗(r,∞; F, G) + N(r, 1; G ≥ 2)

+N0(r, 0; F
′
) + N0(r, 0; G

′
)−N0(r, 0;F

′
) + S(r, F )

≤ 2 N(r,∞; f) + 2 N(r, 0; f) + N(r, 0; g) + N(r, 0;G)
+N(r,∞; G) + S(r, F ) + S(r,G)

= 3 N(r,∞; f) + 2 N(r, 0; f) + 2 N(r, 0; g) + S(r, f) + S(r, g).

Since F 6≡ G we get by Lemma 6 that V 6≡ 0. So by Lemma 9 for k = 2 we get
from (3)

n T (r, f) ≤ 6
2n− 3

[
3
2

N(r, 0; f) + N(r, 0; g)] + 2 N(r, 0; f)(4)

+2 N(r, 0; g) + S(r, f) + S(r, g)

≤ 4n + 3
2n− 3

T (r, f) +
4n

2n− 3
T (r, g) + S(r, f) + S(r, g).

Similarly we obtain

(5) n T (r, g) ≤ 4n

2n− 3
T (r, f) +

4n + 3
2n− 3

T (r, g) + S(r, f) + S(r, g).

Adding (4) and (5) we get

2n2 − 11n− 3
2n− 3

{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction for n ≥ 6.
Hence H ≡ 0 and so by Lemma 5 and Remark 1 the theorem is proved. This

proves the theorem. ¤

Proof of Theorem 2. Let F = fn, G = gn and f , g do not satisfy (1). Since
Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 3) = Eg(S2, 3), it follows that F , G share (1, 0)
and (∞, 3n). If possible, we suppose that H 6≡ 0. Then by Lemmas 1, 2, 3 and 4
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we get

T (r, F ) ≤ N
1)
E (r, 1; F ) + 2 N(r, 0; f) + 2 N(r,∞; f) + N(r, 0; g) + N(r,∞; g)

−2 N0(r, 0; F
′
)−N0(r, 0; G

′
) + S(r, F ) + S(r,G)

≤ N(r, 0; f) + N(r, 0; g) + N(r,∞; f ≥ 4) + N∗(r, 1; F,G) + 2 N(r, 0; f)
+2 N(r,∞; f) + N(r, 0; g) + N(r,∞; g) + S(r, f) + S(r, g)

≤ 3 N(r, 0; f) + 2 N(r, 0; g) + 3 N(r,∞; f) + N(r,∞; f ≥ 4)
+N(r, 1; F ≥ 2) + N(r, 1; G ≥ 2) + S(r, f) + S(r, g)

≤ 3 N(r, 0; f) + 2 N(r, 0; g) + 3 N(r,∞; f) + N(r,∞; f ≥ 4)

+N(r, 0; F
′
F 6= 0) + N(r, 0; G

′
G 6= 0) + S(r, f) + S(r, g)

≤ 4 N(r, 0; f) + 3 N(r, 0; g) + 5 N(r,∞; f) + N(r,∞; f ≥ 4)
+S(r, f) + S(r, g).

Since F 6≡ G, by Lemma 6 we get V 6≡ 0. So by Lemma 8 for k = 3 we get from
above

n T (r, f) ≤ 4 N(r, 0; f) + 3 N(r, 0; g) + 5 N(r,∞; f)(6)

+
1

4n− 1
{2 N(r, 0; f) + 2 N(r, 0; g) + 2 N(r,∞; f)}

+S(r, f) + S(r, g)

≤ (4 +
2

4n− 1
) N(r, 0; f) + (3 +

2
4n− 1

) N(r, 0; g)

+
2

n− 3
(5 +

2
4n− 1

) {N(r, 0; f) + N(r, 0; g)}
+S(r, f) + S(r, g)

≤ {4 +
42n− 12

(n− 3)(4n− 1)
} T (r, f) + {3 +

42n− 12
(n− 3)(4n− 1)

} T (r, g)

+S(r, f) + S(r, g).

Similarly we obtain

n T (r, g) ≤ {3 +
42n− 12

(n− 3)(4n− 1)
} T (r, f) + {4 +

42n− 12
(n− 3)(4n− 1)

} T (r, g)(7)

+S(r, f) + S(r, g).

Adding (6) and (7) we get

{n− 7− 84n− 24
(n− 3)(4n− 1)

} {T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction for n ≥ 10.
Hence H ≡ 0 and so by Lemma 5 and Remark 1 the theorem follows. This

proves the theorem. ¤
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