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Abstract. Let R be a ring with identity and let M = M1⊕M2 be an amply supplemented

R-module. Then it is proved that Mi has (D1) and is Mj-
∗ojective for i 6= j, i = 1, 2, if

and only if for any coclosed submodule X of M , there exist M ′
1 ≤ M1 and M ′

2 ≤ M2 such

that M = X ⊕M ′
1 ⊕M ′

2.

1. Introduction

Throughout this paper all rings will have an identity and all modules will be uni-
tal left R-modules. N ≤ M(N |M) will mean N is a submodule(a direct summand)
of the module M . For M = ⊕i∈IMi and K ⊆ I, M(K) = ⊕i∈KMi.

A module is extending (or satisfies (C1)) if every submodule is essential in a
direct summand. Dually, a module M is called a lifting module(or satisfies (D1)), if
for any submodule N of M , there exists a direct summand K of M such that K ≤ N
and N/K ¿ M/K, equivalently, for any submodule N of M there exist submodules
K, K ′ of M such that M = K ⊕K ′,K ≤ N and N ∩K ′ ¿ K ′. Lifting modules
generalize discrete and quasi-discrete ones; they have been studied extensively(see,
for examples, [1], [2], [6], [8], [9]) but many questions remain unresolved.

An open problem is to find sensible necessary and sufficient conditions for the
direct sum of lifting modules to be lifting. If M1 and M2 are relatively projective,
quasi-projective and (D1)-modules then M = M1 ⊕M2 is a (D1)-module([9, The-
orem 9]). Let M = ⊕n

i=1Mi be a finite direct sum of relatively projective modules
Mi. Then M is lifting if and only if M is an amply supplemented and Mi is lifting
for all 1 ≤ i ≤ n([1, Corollary 2.9]). However, it is not a sufficient condition for a
finite direct sum of lifting modules to be a lifting module. Let p be a prime integer
and M denote the Z−module, (Z/pZ)⊕ (Z/p2Z). Then M is a lifting module and
Z/pZ is not Z/p2Z-projective(see [9, Example 4]).

In this paper we consider when the direct sum of two lifting modules is lifting.
In [3] the authors claim that for any closed submodule X of M = M1 ⊕ M2, M
decomposes as M = X ⊕M ′

1 ⊕M ′
2 with M ′

i ≤ Mi, if and only if Mi has (C1) and
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is Mj-ojective for i 6= j. Dually, we prove that if M = M1 ⊕ M2 be an amply
supplemented R-module. Then it is proved that Mi has (D1) and is Mj-∗cojective
for i 6= j if and only if for any coclosed submodule X of M , there exist M ′

1 ≤ M1

and M ′
2 ≤ M2 such that M = X ⊕M ′

1 ⊕M ′
2.

2. Preliminaries

Let M be a module and S ≤ M . S is called small in M(denoted by S ¿ M)
if for any T ≤ M, S + T = M implies T = M . For N,L ≤ M, N is a supplement
of L in M if N + L = M with N ∩ L ¿ N . Following [7], a module M is called
supplemented if every submodule of M has a supplement in M . On the other
hand, the module M is amply supplemented if, for any submodules A,B of M with
M = A + B there exists a supplement P of A in M such that P ≤ B. Following
[10], the module M is called a weakly supplemented module if for each submodule
A of M there exists a submodule B of M such that M = A + B and A ∩B ¿ M .

Let M be a module and B ≤ A ≤ M . If A/B ¿ M/B, then B is called a
coessential submodule of A in M . A submodule A of M is called coclosed if A has
no proper coessential submodule. Also, we will call B an coclosure(or an s-closure)
of A in M , if B is a coessential submodule of A and B is coclosed in M [1].

Let M be a module. Then by [8, Proposition 4.8], M is lifting if and only
if M is amply supplemented and every supplement submodule of M is a direct
summand.

We list a few lemmas for later use.

Lemma 2.1. Let M be a module and N ≤ M . Consider the following conditions:

(1) N is a supplement submodule of M ;

(2) N is coclosed in M ;

(3) For all X ≤ N, X ¿ M implies X ¿ N .

Then (1) ⇒ (2) ⇒ (3) hold. If M is a weakly supplemented module then
(3) ⇒ (1) holds.

Proof. [1, Lemma 1.1]. ¤

Lemma 2.2. Let M = M1 ⊕M2 and N, L ≤ M1. If N is a supplement of L in
M1, then N ⊕M2 is a supplement of L in M .

Proof. Let N be a supplement of L in M1. Then M1 = N + L and N ∩ L ¿ N .
It is easy to see that M = (N ⊕M2) + L and (N ⊕M2) ∩ L = N ∩ L ¿ N . Thus
N ⊕M2 is a supplement of L in M . ¤

Lemma 2.3. Let K ≤ L ≤ M . If K is coclosed in M , then K is coclosed in L and
the converse is true if L is coclosed in M .

Proof. [11, Lemma 2.6]. ¤

Definition 2.4 ([3]). Let M = ⊕i∈IMi be a direct sum of submodules Mi. Then
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we say that the decomposition M = ⊕i∈IMi is exchangeable if for any direct sum-
mand N of M we have M = (⊕i∈IM

′
i)⊕N with M ′

i ≤ Mi.

3. ∗Cojective modules

Let A and B be modules. Following [5], B is called A-ojective if any diagram

X >
i //

ϕ

²²

A

B

can be embedded in a diagram

X >
i //

ϕ

²²

A = A1

ϕ1

²²

⊕ A2

B = B1 ⊕ B2

ϕ2

OO

such that ϕ2 is a monomorphism and for x = a1 + a2 and ϕ(x) = b1 + b2 one has
b1 = ϕ1(a1) and a2 = ϕ2(b2).

Mohamed and Müller named it ojectivity in honor of Oshiro and they charac-
terize it in [3] as follows:

Theorem 3.1. Let M = A⊕B. Then the following are equivalent:

(1) B is A-ojective;

(2) For any complemnt C of B, M decomposes as M = C⊕A′⊕B′ with A′ ≤ A
and B′ ⊕B.

According to this characterization, Mohamed and Müller give the following dual
definition in [4, Definition 2.3].

Definition 3.2. Let A, B be left R-modules. We say B is A-∗cojective if for any
supplement C of A in A ⊕ B, A ⊕ B decomposes as A ⊕ B = C ⊕ A′ ⊕ B′ with
A′ ≤ A and B′ ≤ B. If B is A-∗cojective and A is B-∗cojective, we say that A and
B are mutually ∗cojective.

As supplements need not exist, ∗cojectivity is not the precise dual of ojectivity.
The precise dual of ojectivity as follows (See, [4]):

Let A and B be modules. A is B-cojective if any diagram

A

ϕ

²²
X ≺ B

πoo
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can be embedded in a diagram

A

ϕ

²²

= A1

ϕ1

²²

⊕ A2

X ≺ πoo B = B1 ⊕ B2

ϕ2

OO

such that ϕ2 is onto, πϕ1 = ϕ|A1 and ϕϕ2 = π|B2.
In [4, Theorem 2.8], Mohamed and Müller give the following characterization

of cojectivity:
Let M = A ⊕ B. Then A is B-cojective if and only if whenever M = N + B,

we have M = N ′⊕A′⊕B′ = N ′ + B with N ′ ≤ N, A′ ≤ A and B′ ≤ B. Therefore
if A is B-cojective, then A is B-∗cojective (See, [4, Proposition 2.9]).

Proposition 3.3. Let M = M1 ⊕ M2. If M1 is M2-projective, then M1 is M2-
∗cojective.

Proof. Let N be a supplement of M2 in M . Then M = N + M2 and N ∩M2 ¿ N .
Since M1 is M2-projective, by [1, Lemma 2.5], there exists a submodule N ′ of N
such that M = N ′ ⊕ M2. Clearly N = N ′ ⊕ (N ∩ M2). Hence N = N ′ and
M = N ⊕M2. Thus M1 is M2-∗cojective. ¤

Let M be a module. Consider the following condition:
(D3) For every direct summands K,L of M with M = K + L,K ∩ L is a direct
summand of M .

Following [8], if the module M is lifting and has (D3) then it is called a quasi-
discrete module.

Let M1 and M2 be modules. Following [1], the module M1 is small M2-projective
if every homomorphism f : M1 → M2/A, where A is a submodule of M2 and
Imf ¿ M2/A, can be lifted to a homomorphism ϕ : M1 → M2.

Proposition 3.4. Let M = M1⊕M2 be an amply supplemented module with (D3).
If M1 is M2-∗cojective, then M1 is small M2-projective.

Proof. Let N be a submodule of M such that (N + M1)/N ¿ M/N . Then
M = N + M2. Since M is amply supplemented there exists a submodule N ′ of M
such that N ′ ≤ N, M = N ′ + M2 and N ′ ∩M2 ¿ N ′, that is, N ′ is a supplement
of M2 in M . Since M1 is M2-∗cojective, M = N ′ ⊕M ′

1 ⊕M ′
2 with M ′

i ≤ Mi. By
(D3), N ′ ∩M2 is a direct summand of M , and so M = N ′ ⊕M2. By [1, Lemma
2.4], M1 is small M2-projective. ¤

Proposition 3.5. Let A1|A and B1|B. If B is A-∗cojective, then B1 is A1-
∗cojective.

Proof. Write M = A⊕B, A = A1 ⊕A2 and B = B1 ⊕B2.
(1) First we prove that B1 is A-∗cojective. Write N = A ⊕ B1, and let X be

a supplement of A in N . By Lemma 2.2, X ⊕ B2 is a supplement of A in M .
As B is A-∗cojective, M = X ⊕ B2 ⊕ A′ ⊕ B′ with A′ ≤ A and B′ ≤ B. Hence
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N = X⊕A′⊕(N∩(B2⊕B′)). The result now follows if we show N∩(B2⊕B′)) ≤ B1.
Indeed, N ∩ (B2 ⊕B′) = (A⊕B1) ∩ (B2 ⊕B′) ≤ (A⊕B1) ∩B = B1.

(2) Next we prove that B is A1-∗cojective. Write L = A1 ⊕ B, and let Y be a
supplement of A1 in L. By Lemma 2.1, it is easy to see that A1 is a supplement
of Y in L. Then A is a supplement of Y in M by Lemma 2.2. Again by Lemma
2.1, Y is a supplement of A in M . As B is A-∗cojective, M = Y ⊕ A

′′ ⊕ B
′′

with
A
′′ ≤ A and B

′′ ≤ B. Hence L = Y ⊕ B
′′ ⊕ (L ∩ A

′′
). It remains to show that

L ∩ A
′′ ≤ A1. Let a

′′ ∈ L ∩ A
′′
. Then a

′′
= a1 + b with a1 ∈ A1 and b ∈ B. Hence

b = a
′′ − a1 ∈ A ∩B = 0, and so a

′′
= a1 ∈ A1.

(3) Our proposition follows from (1) and (2). ¤

Lemma 3.6. Let M = A⊕ B where A is B-∗cojective and B has (D1). If X is a
coclosed submodule of M with M = X +B, then M decomposes as M = X⊕A′⊕B′

with A′ ≤ A and B′ ≤ B.

Proof. Let M = X + B. Since B has (D1), there exists a direct summand B1 of B
such that B = B1 ⊕ B2 and B1 ≤ X ∩ B, X ∩ B2 ¿ B2. Now M = A ⊕ B1 ⊕ B2.
Write N = A⊕B2. Then X = B1⊕X1, where X1 = X ∩N . Hence M = X + B =
X1 + B1 + B2, and so N = X1 + B2. Clearly X1 ∩ B2 = X ∩ B2 ¿ B2. Then B2

is a supplement of X1 in N . Now X1 is a coclosed submodule of X, and X is a
coclosed submodule of M . It then follows by Lemma 2.3 that X1 is coclosed in N .
It is easy to see that X1 is a supplement of B2 in N . Now A is B2-∗cojective, by
Proposition 3.5. Now we get N = X1 ⊕A′ ⊕B′

2 with A′ ≤ A and B′
2 ≤ B2. Hence

M = N ⊕B1 = X1 ⊕B1 ⊕A′ ⊕B′
2 = X ⊕A′ ⊕B′

2. ¤

We prove here the dual of the result of [3, Theorem 10].

Theorem 3.7. Let M = M1 ⊕ M2 be an amply supplemented module. Then Mi

has (D1) and is Mj-∗cojective for i 6= j if and only if for any coclosed submodule
X of M , we have M = X ⊕M ′

1 ⊕M ′
2 with M ′

i ≤ Mi.

Proof. The sufficiency follows from Definition 3.2 and from the fact that (D1) is
inherited by summands.

Conversely, suppose that Mi has (D1) and is Mj-∗cojective for i 6= j. Let X
be a coclosed submodule of M . It is easy to see that M/X is amply supplemented,
and so (X + M1)/X has a coclosure in M/X by [1, Proposition 1.5], that is, there
exists a coclosed submodule N/X of M/X such that N/X ≤ (X + M1)/X and
(X + M1)/N ¿ M/N . By [1, Lemma 1.4], N is coclosed in M . As M = N + M2,
we get by Lemma 3.6 that M = N⊕M ′

1⊕M ′
2 with M ′

i ≤ Mi. Write N1 = M ′
1⊕M ′

2.
Note that X = N ∩ (X + N1) and M = N + (X + N1), and so M/X = N/X ⊕
(X + N1)/X. Therefore (X + N1)/X is coclosed in M/X. Again by [1, Lemma
1.4], X + N1 is coclosed in M . Moreover, M = (X + N1) + M1. Again by Lemma
3.6, M = (X + N1) ⊕M

′′
1 ⊕M

′′
2 with M

′′
i ≤ Mi. Write N2 = M

′′
1 ⊕M

′′
2 . Hence

N1 = (X + N1) ∩ (N1 + N2) and N ∩ (X + N1) ∩ (N1 + N2) = X ∩ (N1 + N2) = 0.
So M = X ⊕ (N1 + N2) = X ⊕ (M ′

1 + M ′
2 + M

′′
1 + M

′′
2 ) = X ⊕M∗

1 ⊕M∗
2 , where

M∗
1 = M ′

1 + M
′′
1 and M∗

2 = M ′
2 + M

′′
2 . ¤
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In view of Definition 2.4, Theorem 3.7 may be reformulated as follows:

Theorem 3.8. Let M = M1 ⊕ M2 be an amply supplemented module. Then M
has (D1) and the decomposition is exchangeable if and only if, for i = 1, 2, Mi has
(D1) and is Mj-∗cojective for i 6= j.

By analogy with the proof of [3, Theorem 11], we have

Theorem 3.9. Let n ≥ 2 be an integer and let M = ⊕n
i=1Mi be an amply supple-

mented module. Then the following are equivalent:

(1) M has (D1) and the decomposition is exchangeable;

(2) The Mi have (D1), and M1⊕ · · · ⊕Mi−1 and Mi are mutually ∗cojective, for
2 ≤ i ≤ n;

(3) The Mi have (D1), and M(I) is M(J)-∗cojective for any disjoint nonempty
subset I and J of {1, 2, · · ·n}.

4. Semi-discrete modules

Definition 4.1 ([3]). Let µ be a cardinal number. A module M is said to have
the µ -internal exchange property if any decomposition M = ⊕i∈IMi with |I| ≤ µ,
is exchangeable.

Definition 4.2. We call a module M semi-discrete if M has (D1) and the 2-internal
exchange property.

Thus, if M is an amply supplemented module, then M is semi-discrete if and
only if for any coclosed submodule C of M and any decomposition M = A⊕B, we
have M = C ⊕A′ ⊕B′ with A′ ≤ A and B′ ≤ B.

It is well known that a discrete module has the exchange (hence the internal
exchange) property, and so is semi-discrete module. However, it is not known
whether a quasi-discrete module has the internal exchange property. Let M be
a quasi-discrete module. In [8, Corollary 4.19], it is proved that if every hollow
summand of M has a local endomorphism ring, then M has exchange property, and
so these modules are semi-discrete.

In [8, Lemma 4.23], it is noticed that if M is a quasi-discrete module, then for
every decomposition M = A⊕B, A and B are mutually projective. The following
is analogue for semi-discrete modules.

Proposition 4.3. Let M be any module. M is semi-discrete if and only if M has
(D1) and for every decomposition M = A⊕B, A and B are mutually ∗cojective.

Proof. The result follows from Theorem 3.7 and from the fact that (D1) is inherited
by summands. ¤

A module M = M1⊕· · ·⊕Mn is quasi-discrete if and only if Mi is quasi-discrete
and Mj-projective for all i 6= j([1, Theorem 2.13]). For n = 2 the following is an
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analogous result for semi-discrete modules.

Theorem 4.4. Let M = M1 ⊕M2 be an amply supplemented module. Then M is
semi-discrete if and only if Mi is semi-discrete and Mj-∗cojective for i 6= j.

Proof. The necessity follows from by [3, Proposition 15] and Proposition 4.3. The
sufficiency is analogous with the proof of [3, Theorem 19]. ¤

Corollary 4.5. Let n ≥ 2 be an integer and let M = ⊕n
i=1Mi be an amply supple-

mented module. Then the following are equivalent:

(1) M is semi-discrete;

(2) The Mi are semi-discrete, and M1⊕· · ·⊕Mi−1 and Mi are mutually ∗cojective,
for 2 ≤ i ≤ n;

(3) Every Mi is semi-discrete, and M(I) is M(J)- ∗cojective for any disjoint
nonempty subset I and J of {1, 2, · · ·n}.

Proof. Theorem 4.4 and induction. ¤

Proposition 4.6. Let M be a quasi-projective module. Then the following are
equivalent:

(1) M is supplemented;

(2) M is amply supplemented;

(3) M is lifting;

(4) M is quasi-discrete;

(5) M is discrete;

(6) M is semi-discrete.

Proof. (5) ⇒ (6) ⇒ (3) are clear. Now the result follows by [12, Proposition 2.2].¤

Theorem 4.7. For any ring R the following are equivalent:

(1) R is a left perfect ring;

(2) Every quasi-projective left R-module is semi-discrete.

Proof. This is clear by Proposition 4.6 and [12, Theorem 2.6]. ¤

Theorem 4.8. For any ring R the following are equivalent:

(1) R is a left perfect ring;

(2) Every projective left R-module is semi-discrete.
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Proof. This is clear by Proposition 4.6 and [12, Theorem 2.7]. ¤

Corollary 4.9. Let M be a quasi-projective module such that M = ⊕n
i=1Mi is a

finite direct sum of submodules Mi, (1 ≤ i ≤ n). Then M is semi-discrete if and
only if Mi, (1 ≤ i ≤ n), is semi-discrete.

Proof. Necessity is clear. Conversely, suppose that each Mi is semi-discrete. Then,
by [12, Proposition 2.8], M is lifting. Hence M is semi-discrete by Proposition 4.6.
¤
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