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ABSTRACT. Let R be aring with identity and let M = M; & M2 be an amply supplemented
R-module. Then it is proved that M; has (D1) and is M;-"ojective for ¢ # j, i = 1,2, if
and only if for any coclosed submodule X of M, there exist M{ < M; and M} < M such
that M = X & M{ ® Mj.

1. Introduction

Throughout this paper all rings will have an identity and all modules will be uni-
tal left R-modules. N < M (N|M) will mean N is a submodule(a direct summand)
of the module M. For M = EBieIMi and K - I, M(K) = @iEKMi-

A module is extending (or satisfies (Cy)) if every submodule is essential in a
direct summand. Dually, a module M is called a lifting module(or satisfies (Dy)), if
for any submodule N of M, there exists a direct summand K of M such that K < N
and N/K <« M/K, equivalently, for any submodule N of M there exist submodules
K, K" of M such that M = K $ K/, K < N and NN K’ <« K’. Lifting modules
generalize discrete and quasi-discrete ones; they have been studied extensively(see,
for examples, [1], [2], [6], [8], [9]) but many questions remain unresolved.

An open problem is to find sensible necessary and sufficient conditions for the
direct sum of lifting modules to be lifting. If M; and M are relatively projective,
quasi-projective and (D;)-modules then M = My ® Ms is a (D1)-module([9, The-
orem 9]). Let M = &}, M; be a finite direct sum of relatively projective modules
M;. Then M is lifting if and only if M is an amply supplemented and M; is lifting
for all 1 < i < n([1, Corollary 2.9]). However, it is not a sufficient condition for a
finite direct sum of lifting modules to be a lifting module. Let p be a prime integer
and M denote the Z—module, (Z/pZ) ® (Z/p*Z). Then M is a lifting module and
ZJpZ is not Z/p*Z-projective(see [9, Example 4]).

In this paper we consider when the direct sum of two lifting modules is lifting.
In [3] the authors claim that for any closed submodule X of M = M; & My, M
decomposes as M = X & M| & M} with M] < M;, if and only if M; has (C;) and
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is Mj-ojective for i # j. Dually, we prove that if M = M; @ M, be an amply
supplemented R-module. Then it is proved that M; has (D;) and is M;-*cojective
for ¢ # j if and only if for any coclosed submodule X of M, there exist M; < M;
and M3 < Mj such that M = X & M| & Mj,.

2. Preliminaries

Let M be a module and S < M. S is called small in M (denoted by S < M)
if forany T < M,S+T = M implies T'= M. For N,L < M, N is a supplement
of Lin M if N+ L =M with NN L < N. Following [7], a module M is called
supplemented if every submodule of M has a supplement in M. On the other
hand, the module M is amply supplemented if, for any submodules A, B of M with
M = A+ B there exists a supplement P of A in M such that P < B. Following
[10], the module M is called a weakly supplemented module if for each submodule
A of M there exists a submodule B of M such that M = A+ B and ANB < M.

Let M be a module and B < A < M. If A/B < M/B, then B is called a
coessential submodule of A in M. A submodule A of M is called coclosed if A has
no proper coessential submodule. Also, we will call B an coclosure(or an s-closure)
of Ain M, if B is a coessential submodule of A and B is coclosed in M.

Let M be a module. Then by [8, Proposition 4.8], M is lifting if and only
if M is amply supplemented and every supplement submodule of M is a direct
summand.

We list a few lemmas for later use.

Lemma 2.1. Let M be a module and N < M. Consider the following conditions:

(1) N is a supplement submodule of M ;

(2) N is coclosed in M ;

(3) For all X < N, X < M implies X < N.

Then (1) = (2) = (3) hold. If M is a weakly supplemented module then

(3) = (1) holds.
Proof. [1, Lemma 1.1]. O
Lemma 2.2. Let M = My, & My and N, L < M;. If N is a supplement of L in
My, then N ® M> is a supplement of L in M.

Proof. Let N be a supplement of L in M;. Then M; = N+ L and NNL < N.
It is easy to see that M = (N @ M) + L and (N @ My)NL=NNL < N. Thus
N @ Ms is a supplement of L in M. O

Lemma 2.3. Let K < L < M. If K is coclosed in M, then K is coclosed in L and
the converse is true if L is coclosed in M.

Proof. [11, Lemma 2.6]. O
Definition 2.4 ([3]). Let M = @;c;M; be a direct sum of submodules M;. Then
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we say that the decomposition M = @, M, is exchangeable if for any direct sum-
mand N of M we have M = (&;erM]) ® N with M} < M,;.

3. *Cojective modules

Let A and B be modules. Following [5], B is called A-ojective if any diagram

X>—"=4
|
B
can be embedded in a diagram
X>—— A=A ® Ay
@l soll Tw
B = By @ By

such that ¢o is a monomorphism and for = a1 + ag and ¢(x) = by + bs one has
b1 = @1(@1) and as = (pg(bg)

Mohamed and Miiller named it ojectivity in honor of Oshiro and they charac-
terize it in [3] as follows:

Theorem 3.1. Let M = A® B. Then the following are equivalent:
(1) B is A-ojective;

(2) For any complemnt C of B, M decomposes as M = C @ A’ & B’ with A’ < A
and B’ ® B.

According to this characterization, Mohamed and Miiller give the following dual
definition in [4, Definition 2.3].

Definition 3.2. Let A, B be left R-modules. We say B is A-*cojective if for any
supplement C of A in A® B,A&® B decomposes as A® B = C @ A & B’ with
A’ < A and B’ < B. If B is A-*cojective and A is B-*cojective, we say that A and
B are mutually *cojective.

As supplements need not exist, *cojectivity is not the precise dual of ojectivity.
The precise dual of ojectivity as follows (See, [4]):

Let A and B be modules. A is B-cojective if any diagram

A

|

X <<—RB8
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can be embedded in a diagram

A = Al &) A2
wi sﬂll Tﬂm
X <<= B=B ® B

such that 9 is onto, 1 = p|A; and pps = 7| Ba.

In [4, Theorem 2.8], Mohamed and Miiller give the following characterization
of cojectivity:

Let M = A® B. Then A is B-cojective if and only if whenever M = N + B,
we have M = N'® A’ @ B’ = N'+ B with N’ < N, A’ < A and B’ < B. Therefore
if A is B-cojective, then A is B-*cojective (See, [4, Proposition 2.9]).

Proposition 3.3. Let M = M; & Ms. If My is Ms-projective, then My is Ms-
* cojective.

Proof. Let N be a supplement of Ms in M. Then M = N 4+ My and NN Ms < N.
Since M, is Ms-projective, by [1, Lemma 2.5], there exists a submodule N’ of N
such that M = N’ @ M,. Clearly N = N’ & (N N M;). Hence N = N’ and
M = N & M,. Thus M; is Ms-*cojective. O

Let M be a module. Consider the following condition:
(D3) For every direct summands K, L of M with M = K + L, K N L is a direct
summand of M.

Following [8], if the module M is lifting and has (D3) then it is called a quasi-
discrete module.

Let M7 and M3 be modules. Following [1], the module M is small Ms-projective
if every homomorphism f : M; — Ms/A, where A is a submodule of M and
Imf < My/A, can be lifted to a homomorphism ¢ : M; — Ms.

Proposition 3.4. Let M = M; @ My be an amply supplemented module with (Ds).
If My is Ms-*cojective, then My is small Ms-projective.

Proof. Let N be a submodule of M such that (N + M;)/N <« M/N. Then
M = N + Ms. Since M is amply supplemented there exists a submodule N’ of M
such that N' < N, M = N’ + My and N' N My < N’, that is, N’ is a supplement
of My in M. Since My is Ma-*cojective, M = N’ & M| & M} with M/ < M;. By
(D3), N’ N Ms is a direct summand of M, and so M = N’ & M,. By [1, Lemma
2.4], My is small Ma-projective. O

Proposition 3.5. Let Ai|A and By|B. If B is A-*cojective, then By is A;-
* cojective.
Proof. Write M = A®d B, A=A, ® Ay and B= B, & Bs.

(1) First we prove that By is A-*cojective. Write N = A @ By, and let X be

a supplement of A in N. By Lemma 2.2, X & By is a supplement of A in M.
As B is A-*cojective, M = X @& Bo @ A’ & B’ with A’ < A and B’ < B. Hence
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N =XaA'®(NN(B2@B')). The result now follows if we show NN(B:@B')) < By.
Indeed, NN (B @ B')=(A® B1)N(Ba® B') < (A® B1)N B = By.

(2) Next we prove that B is A;-*cojective. Write L = A; @ B, and let Y be a
supplement of A; in L. By Lemma 2.1, it is easy to see that A; is a supplement
of Y in L. Then A is a supplement of Y in M by Lemma 2.2. Again by Lemma
2.1, Y is a supplement of A in M. As B is A-*cojective, M =Y ® A" ® B" with
A" <Aand B" < B. Hence L=Y @ B" @ (LN A"). It remains to show that
LnA" < Aq. Let a' e LNA". Thenad = a1 + b with a1 € Ay and b € B. Hence
b:a//—al € ANB =0, and so a” =a; € A;.

(3) Our proposition follows from (1) and (2). O

Lemma 3.6. Let M = A ® B where A is B-*cojective and B has (D1). If X is a
coclosed submodule of M with M = X + B, then M decomposes as M = XA’ & B’
with A’ < A and B’ < B.

Proof. Let M = X + B. Since B has (D), there exists a direct summand B; of B
such that B = B ® By and B < XNB,XNBy < By. Now M = A® B @ Bs.
Write N = A® By. Then X = B; & X1, where X; = XN N. Hence M = X + B =
X1+ By + By, and so N = X7 + Bs. Clearly X1 N Bo = X N By < Bs. Then Bg
is a supplement of X; in N. Now X; is a coclosed submodule of X, and X is a
coclosed submodule of M. It then follows by Lemma 2.3 that X; is coclosed in N.
It is easy to see that X is a supplement of By in N. Now A is Bs-*cojective, by
Proposition 3.5. Now we get N = X; @ A’ @ B with A’ < A and B, < By. Hence
M=N&B =XoBioA B, =XadA @B, |

We prove here the dual of the result of [3, Theorem 10].

Theorem 3.7. Let M = My & My be an amply supplemented module. Then M;
has (D1) and is M;-*cojective for i # j if and only if for any coclosed submodule
X of M, we have M = X & M| & M}, with M] < M.

Proof. The sufficiency follows from Definition 3.2 and from the fact that (D) is
inherited by summands.

Conversely, suppose that M; has (D) and is M;-*cojective for i # j. Let X
be a coclosed submodule of M. It is easy to see that M /X is amply supplemented,
and so (X + M;)/X has a coclosure in M/X by [1, Proposition 1.5], that is, there
exists a coclosed submodule N/X of M/X such that N/X < (X + M;)/X and
(X + M;)/N <« M/N. By [1, Lemma 1.4], N is coclosed in M. As M = N + M,
we get by Lemma 3.6 that M = N ® M| ® M} with M] < M,;. Write Ny = M| ® Mj.
Note that X = NN (X + N;) and M = N + (X + Ny), and so M/X = N/X &
(X + N1)/X. Therefore (X + N7)/X is coclosed in M/X. Again by [1, Lemma
1.4], X 4+ Ny is coclosed in M. Moreover, M = (X + N;) + M;. Again by Lemma
3.6, M = (X + N)) ®@ M, ® M, with M, < M;. Write Ny = M, @& M, . Hence
Ni = (X+N1)ﬂ(N1+N2) and Nﬂ(X+N1)ﬂ(N1+N2) =XN(N;+Ny)=0.
So M =X® (N, +No) =X @ (M, + M+ M, +M,) =X & M; ® M, where
Mj = M| + M, and Mj = M} + M, . 0
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In view of Definition 2.4, Theorem 3.7 may be reformulated as follows:

Theorem 3.8. Let M = M; & My be an amply supplemented module. Then M
has (D1) and the decomposition is exchangeable if and only if, for i =1, 2, M; has
(D1) and is M;-*cojective for i # j.

By analogy with the proof of [3, Theorem 11], we have

Theorem 3.9. Let n > 2 be an integer and let M = ®}_, M; be an amply supple-
mented module. Then the following are equivalent:

(1) M has (D7) and the decomposition is exchangeable;

(2) The M; have (D1), and My ®---® M;_1 and M; are mutually * cojective, for
2<1<n;

(3) The M; have (Dy), and M(I) is M(J)-*cojective for any disjoint nonempty
subset I and J of {1,2,---n}.

4. Semi-discrete modules

Definition 4.1 ([3]). Let p be a cardinal number. A module M is said to have
the p -internal exchange property if any decomposition M = @;c; M; with |[I| < p,
is exchangeable.

Definition 4.2. We call a module M semi-discrete if M has (D) and the 2-internal
exchange property.

Thus, if M is an amply supplemented module, then M is semi-discrete if and
only if for any coclosed submodule C' of M and any decomposition M = A ® B, we
have M = C @ A’ ® B’ with A’ < A and B’ < B.

It is well known that a discrete module has the exchange (hence the internal
exchange) property, and so is semi-discrete module. However, it is not known
whether a quasi-discrete module has the internal exchange property. Let M be
a quasi-discrete module. In [8, Corollary 4.19], it is proved that if every hollow
summand of M has a local endomorphism ring, then M has exchange property, and
so these modules are semi-discrete.

In [8, Lemma 4.23], it is noticed that if M is a quasi-discrete module, then for
every decomposition M = A @ B, A and B are mutually projective. The following
is analogue for semi-discrete modules.

Proposition 4.3. Let M be any module. M is semi-discrete if and only if M has
(D1) and for every decomposition M = A® B, A and B are mutually * cojective.
Proof. The result follows from Theorem 3.7 and from the fact that (D) is inherited

by summands. O

A module M = M7 ®---® M, is quasi-discrete if and only if M; is quasi-discrete
and Mj-projective for all ¢ # j([1, Theorem 2.13]). For n = 2 the following is an
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analogous result for semi-discrete modules.

Theorem 4.4. Let M = My & Ms be an amply supplemented module. Then M is
semi-discrete if and only if M; is semi-discrete and M;-* cojective for i # j.

Proof. The necessity follows from by [3, Proposition 15] and Proposition 4.3. The
sufficiency is analogous with the proof of [3, Theorem 19]. |

Corollary 4.5. Let n > 2 be an integer and let M = ®]_, M; be an amply supple-
mented module. Then the following are equivalent:

(1) M is semi-discrete;

(2) The M; are semi-discrete, and M1 ®---®M,_1 and M; are mutually * cojective,
for2 <i<n;

(3) Ewvery M; is semi-discrete, and M(I) is M(J)- *cojective for any disjoint
nonempty subset I and J of {1,2,---n}.

Proof. Theorem 4.4 and induction. O

Proposition 4.6. Let M be a quasi-projective module. Then the following are
equivalent:

(1) M is supplemented;

(2) M is amply supplemented;
(3) M is lifting;

(4) M is quasi-discrete;

(5) M is discrete;

(6) M is semi-discrete.

Proof. (5) = (6) = (3) are clear. Now the result follows by [12, Proposition 2.2].00
Theorem 4.7. For any ring R the following are equivalent:

(1) R is a left perfect ring;

(2) FEvery quasi-projective left R-module is semi-discrete.
Proof. This is clear by Proposition 4.6 and [12, Theorem 2.6]. O
Theorem 4.8. For any ring R the following are equivalent:

(1) R is a left perfect ring;

(2) Ewvery projective left R-module is semi-discrete.
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Proof. This is clear by Proposition 4.6 and [12, Theorem 2.7]. O

Corollary 4.9. Let M be a quasi-projective module such that M = @], M; is a
finite direct sum of submodules M;, (1 < i < n). Then M is semi-discrete if and
only if M;, (1 <1i<n), is semi-discrete.

Proof. Necessity is clear. Conversely, suppose that each M; is semi-discrete. Then,
by [12, Proposition 2.8], M is lifting. Hence M is semi-discrete by Proposition 4.6.

O
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