Negative Definite Functions on Hypercomplex Systems

Ahmed M. Zabel
Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
e-mail: zabelahmed@hotmail.com

Buthinah A. Bin Dehaish
Mathematics Department, Girl's College of Education, Jeddah, Saudi Arabia
Abstract. We present a concept of negative definite functions on a commutative normal hypercomplex system $L_{1}(Q, m)$ with basis unity. Negative definite functions were studied in [5] and [4] for commutative groups and semigroups respectively. The definition of such functions on Q is a natural generalization of that defined on a commutative hypergroups.

1. Preliminaries

Let Q be a complete separable locally compact metric space of points p, q, r, \cdots; $\beta(Q)$ is the σ-algebra of Borel subsets, and $B_{0}(Q)$ is the subring of $B(Q)$, which consists of sets with compact closure. We shall consider the Borel measures; i.e., positive regular measures on $B(Q)$, finite on compact sets. We denote by $C(Q)$ the space of continuous functions on $Q ; C_{b}(Q), C_{\infty}(Q)$ and $C_{0}(Q)$ consists respectively of bounded, tending to zero at infinity and compactly supported functions from $C(Q)$.

A hypercomplex system with the basis Q is defined by its structure measure $c(A, B, r)(A, B \in B(Q) ; r \in Q)$. A structure measure $c(A, B, r)$ is a Borel measure in A (respectively B) if we fix B, r (respectively A, r) which satisfies the following properties:
(H1) $\forall A, B \in \beta_{0}(Q)$, the function $c(A, B, r) \in C_{0}(Q)$,
(H2) $\forall A, B \in \beta_{0}(Q)$ and $s, r \in Q$, the following associativity relation holds

$$
\int_{Q} c(A, B, r) d_{r} c\left(E_{r}, C, s\right)=\int_{Q} C(B, C, r) d_{r} C\left(A, E_{r}, s\right), \quad C \in B(Q) .
$$

[^0](H3) The structure measure is said to be commutative if
$$
c(A, B, r)=c(B, A, r), \quad\left(A, B \in B_{0}(Q)\right) .
$$

A measure m is said to be a multiplicative measure if

$$
\int_{Q} c(A, B, r) d m(r)=m(A) m(B) ; \quad A, B \in \beta_{0}(Q) .
$$

(H4) We will suppose the existence of a multiplicative measure. Under certain restrictions imposed on the commutative structure measure, multiplicative measure exists. (See [10]).
Consider the space $L_{1}(Q, m)=L_{1}$ of functions on Q with respect to the multiplicative measure m.

Theorem 1.1. For any $f, g \in L_{1}(Q, m)$, the convolution

$$
\begin{align*}
(f * g)(r) & =\int_{Q} f(p) d_{p} \int_{Q} g(q) d_{q} c\left(E_{p}, E_{q}, r\right) \tag{1.1}\\
& =\int_{Q} \int_{Q} f(p) g(q) c(p, q, r) d m(p) d m(q) \\
& =\int_{Q} \int_{Q} f(p) g(q) d m_{r}(p, q)
\end{align*}
$$

is well defined. (See [2]).
The space $L_{1}(Q, m)$ with the convolution (1.1) is a Banach algebra which is commutative if (H3) holds. This Banach algebra is called the hypercomplex system with the basis Q.

It is obvious that $C(A, B, r)=\left(K_{A} * K_{B}\right)(r) ; A, B \in \beta_{0}(Q)$ and K_{A} is the characteristic function of the set A.

A hypercomplex system may or may not have a unity. If a unity not included in $L_{1}(Q, m)$, then it is convenient to join it formally to L_{1}.

A non zero measurable and bounded almost everywhere function $Q \ni r \rightarrow$ $\chi(r) \in C$ is said to be a character of the hypercomplex system L_{1} if $\forall A, B \in \beta_{0}(Q)$

$$
\begin{aligned}
& \int_{Q} c(A, B, r) \chi(r) d m(r)=\chi(A) \chi(B) \\
& \int \chi(r) d m(r)=\chi(C), \quad C \in \beta_{0}(Q) .
\end{aligned}
$$

(H5) A hypercomplex system is said to be normal, if there exists an involution homomorphism $Q \ni r \rightarrow r^{*} \in Q$, such that $m(A)=m\left(A^{*}\right)$ and $c(A, B, C)=$ $c\left(C, B^{*}, A\right), c(A, B, C)=c\left(A^{*}, C, B\right),\left(A, B \in \beta_{0}(Q)\right)$, where

$$
c(A, B, C)=\int_{C} c(A, B, r) d m(r) .
$$

(H6) A normal hypercomplex system possesses a basis unity if there exists a point $e \in Q$ such that $e^{*}=e$ and

$$
c(A, B, e)=m\left(A^{*} \cap B\right), \quad A, B \in \beta(Q) .
$$

We should remark that, for a normal hypercomplex system, the mapping

$$
L_{1}(Q, m) \ni f(r) \rightarrow f^{*}(r) \in L_{1}(Q, m)
$$

is an involution in the Banach algebra L_{1}, the multiplicative measure is unique and the characters of such a system are continuous. (See [1]). A character χ of a normal hypercomplex system is said to be Hermitian if

$$
\chi\left(r^{*}\right)=\overline{\chi(r)}, \quad(r \in Q) .
$$

Denote the set of all bounded Hermitian characters by X_{h}, i.e.,

$$
X_{h}=\left\{\chi \in C_{b}(Q): \chi \neq 0, \int c(A, B, r) \chi(r) d m(r)=\chi(A) \chi(B), \overline{\chi(r)}=\chi\left(r^{*}\right)\right\}
$$

Let $L_{1}(Q, m)$ be a hypercomplex system with compact basis, \hat{Q} be a dual countable basis (collection of all characters χ, ϕ, ψ, \cdots), and \hat{m} be a Plancherel measure. The space $L_{1}(\hat{Q}, \hat{m})=l_{1}(\hat{m})$ becomes a hypercomplex system with discrete basis if we define a dual structure measure \hat{c} by the formula

$$
\begin{equation*}
\hat{c}(\chi, \phi, \psi)=\hat{m}(\chi) \hat{m}(\phi) \int_{Q} \chi(r) \phi(r) \overline{\psi(r)} d m(r), \quad(\chi, \phi, \psi \in \hat{Q}) \tag{1.2}
\end{equation*}
$$

and assume that the integral in (1.2) is nonnegative.
This dual hypercomplex system is normal if we set $\chi^{*}=\bar{\chi}$, and it has a basis unity $\hat{e} \equiv 1$. See [2].

2. Generalized translation operators and hypercomplex system

In a series of works originated as early as in 1938, J. Delsarte [7], [8], and then B. M. Levitan [11], [12] noticed that some facts of classical harmonic analysis can be generalized by replacing exponential functions $e^{i \lambda q}\left(q, \lambda \in R^{1}\right)$ by some family of complex-valued functions $\chi(q, \lambda)$ which inherit the following property of the indicated exponential functions. The exponential functions are connected with the family of ordinary translation operators $R_{p}\left(p \in R^{1}\right)$ acting upon complexvalued functions $f(q)\left(q \in R^{1}\right)$ according to the rule

$$
\left(R_{P} f\right)(q)=f(p+q),
$$

i.e.,

$$
\begin{equation*}
R_{p} e^{i \lambda q}=e^{i \lambda p} e^{i \lambda q} \tag{2.1}
\end{equation*}
$$

for any λ.
For functions $\chi(q, \lambda)$, where q varies in some set Q and λ in another set \hat{Q}, there should exist a family of linear "generalized translation" operators $R_{p}(p \in Q)$, acting on the functions of the variable $q \in Q$ such that an equality of (2.1) type is valid.

$$
\left(R_{p} \chi(., \lambda)\right)(q)=\chi(p, \lambda) \chi(q, \lambda) \quad(p, q \in Q, \lambda \in \hat{Q}) .
$$

It is natural that the family of such operators R_{p} should have some additional properties, similar to a usual shift. It was clear from [8], [12] that it is important to study not only generalized translations but a convolution of functions associated with these translations. So by analogy with the usual convolution

$$
\begin{equation*}
(f * g)(q)=\int_{R} f(p) g(q-p) d p=\int_{R} f(p)\left(R_{-p} g\right)(q) d p \tag{2.2}
\end{equation*}
$$

it is possible to introduce a generalized convolution $*$ similar to (2.2), associated with the generalized translation operators:

$$
\begin{equation*}
(f * g)(q)=\int_{Q} f(p)\left(R_{p^{*}} g\right)(q) d m(p) \tag{2.3}
\end{equation*}
$$

which is equivalent to the form (1.1).
In (2.3), the involution * in Q is used instead of the inverse in R, and m is the multiplicative measure.

Let $L_{1}(Q, m)$ be a hypercomplex system with a basis Q and Φ be a space of complex-valued functions on Q. Assume that an operator valued function $Q \ni p \rightarrow$ $R_{p}: \Phi \rightarrow \Phi$ is given such that the function $g(p)=\left(R_{p} f\right)(q)$ belongs to Φ for any $f \in \Phi$ and any fixed $q \in Q$. The operators $R_{p}(p \in Q)$ are called generalized translation operators, provided that the following axioms are satisfied:
(T1) Associativity axiom: The equality

$$
\left(R_{p}^{q}\left(R_{q} f\right)\right)(r)=\left(R_{q}^{r}\left(R_{p} f\right)\right)(r)
$$

holds for any elements $p, q \in Q$.
(T2) There exists an element $e \in Q$ such that R_{e} is the identity in Φ. (See [3]).

3. Positive and negative definite functions on hypercomplex system

Let $L_{1}(Q, m)$ be a commutative normal hypercomplex system with basis unity.

Definition 3.1. A continuous bounded function $\varphi(r)(r \in Q)$ is called positive definite if the inequality

$$
\begin{equation*}
\sum_{i, j=1}^{N} \lambda_{i} \overline{\lambda_{j}}\left(R_{r_{i}^{*}} \varphi\right)\left(r_{j}\right) \geq 0 \tag{3.1}
\end{equation*}
$$

holds for all $r_{1}, \cdots, r_{n} \in Q$, and $\lambda_{1}, \cdots, \lambda_{n} \in C, \quad(n \in N)$.
If the generalized translation operators R_{t} extended to L_{∞} map $C_{b}(Q)$ into $C_{b}(Q \times Q)$, then the inequality (3.1) of positive definiteness is equivalent for the functions $\varphi(r) \in C_{b}(Q)$ to

$$
\int_{Q} \int_{Q}\left(R_{t} \varphi\right)\left(s^{*}\right) x(t) \overline{x(s)} d t d s \geq 0, \quad x \in L_{1}(Q, m)
$$

By $P(Q)$, we shall denote the set of all continuous positive definite functions on Q.

Theorem 3.2. Every function $\varphi \in P(Q)$ admits a unique representation in the form of an integral

$$
\begin{equation*}
\varphi(r)=\int_{X_{h}} \chi(r) d \mu(\chi), \quad \chi \in X_{h} \tag{3.2}
\end{equation*}
$$

where μ is a nonnegative finite regular measure on the space X_{h}. Conversely, each function of the form (3.2) belongs to $P(Q)$.

For the proof, see [1].
Theorem 3.2 is an analog of the Bochner theorem for hypercomplex systems.
Corollary 3.3. If $\varphi \in P(Q)$; then the following properties holds:
(i) $\varphi(e) \geq 0$;
(ii) $\varphi\left(r^{*}\right)=\overline{\varphi(r)} \quad \forall r \in Q$;
(iii) $|\varphi(r)| \leq \varphi(e) \quad \forall r \in Q$;
(iv) $\left|R_{s}(\varphi)(t)\right|^{2} \leq\left(R_{s^{*}} \varphi\right)(s)\left(R_{t^{*}} \varphi\right)(t)$;
(v) $|\varphi(s)-\varphi(t)|^{2} \leq 2 \varphi(e)\left[\varphi(e)-\operatorname{Re}\left(R_{s} \varphi\right)\left(t^{*}\right)\right] \quad(s, t \in Q)$.

Definition 3.4. A continuous bounded function $\psi: Q \rightarrow C$ is called negative definite if for any $r_{1}, \cdots, r_{n} \in Q$ and $c_{1}, \cdots, c_{n} \in C$

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left[\psi\left(r_{i}\right)+\overline{\psi\left(r_{j}\right)}-\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right)\right] c_{i} \overline{c_{j}} \geq 0 \tag{3.3}
\end{equation*}
$$

For example each constant function, $c \geq 0$ is negative definite. Obviously the following holds for a negative definite function ψ :

$$
\begin{align*}
& \psi(e) \geq 0, \quad \overline{\psi(r)}=\psi\left(r^{*}\right), \quad\left(R_{r} * \psi\right)(r) \in R \quad \text { and } \tag{3.4}\\
& \psi(r)+\psi\left(r^{*}\right) \geq\left(R_{r^{*}} \psi\right)(r)
\end{align*}
$$

Let us abbreviate the set of negative definite functions on Q by $N(Q)$.
We note that $\psi=\psi^{*}$, and $R e \psi$ is non negative if $\left(R_{r^{*}} \psi\right)(r) \geq 0$.

Theorem 3.5. A function $\psi: Q \rightarrow C$ is negative definite if and only if the following conditions are satisfied:
(i) $\quad \psi(e) \geq 0, \quad \psi$ is continuous bounded function
(ii) $\overline{\psi(r)}=\psi\left(r^{*}\right) \quad$ for each $\quad r \in Q, \quad$ and
(iii) if $r_{1}, \cdots, r_{n} \in Q$, and $c_{1}, \cdots, c_{n} \in C$ with $\sum_{i=1}^{n} c_{i}=0$, then $\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} \leq 0$
holds.
Proof. Suppose first that $\psi \in N(Q)$. It is clear that (i) and (ii) are satisfied. Let $n \in N ; r_{1}, \cdots, r_{n} \in Q$ and $c_{1}, \cdots, c_{n} \in C$ be such that

$$
\sum_{i=1}^{n} c_{i}=0 .
$$

Then we find

$$
\begin{aligned}
0 & \leq \sum_{i, j=1}^{n}\left(\psi\left(r_{i}\right)+\overline{\psi\left(r_{j}\right)}-\left(R_{r_{j}^{*}}\right)\left(r_{i}\right)\right) c_{i} \overline{c_{j}} \\
& =\overline{\left(\sum_{j=1}^{n} c_{j}\right)}\left(\sum_{i=1}^{n} \psi\left(r_{i}\right) c_{i}\right)+\left(\sum_{i=1}^{n} c_{i}\right) \overline{\left(\sum_{j=1}^{n} \psi\left(r_{j}\right) c_{j}\right)}-\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} \\
& =-\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} .
\end{aligned}
$$

Then (iii) is satisfied.
Conversely, suppose that ψ satisfies (i)-(iii), and consider $r_{1}, \cdots, r_{n} \in Q$ and $c_{1}, \cdots, c_{n} \in C$. For the ($n+1$)-tuples $e, r_{1}, \cdots, r_{n} \in Q$ and $c_{0}, c_{1}, \cdots, c_{n} \in C$, where

$$
\sum_{i=0}^{n} c_{i}=0
$$

i.e.,

$$
c_{0}=-\sum_{i=1}^{n} c_{i},
$$

we get by (iii)

$$
\begin{aligned}
0 & \geq \sum_{i, j=0}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} \\
& =\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}}+\overline{c_{0}} \sum_{i=1}^{n} \psi\left(r_{i}\right) c_{i}+c_{0} \sum_{j=1}^{n} \psi\left(r_{j}^{*}\right) \overline{c_{j}}+\psi(e)\left|c_{0}\right|^{2} \\
& =\sum_{i, j=1}^{n}\left(\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right)-\psi\left(r_{i}\right)-\psi\left(r_{j}^{*}\right)\right) c_{i} \overline{c_{j}}+\psi(e)\left|c_{0}\right|^{2}
\end{aligned}
$$

hence, using (i) and (ii), that

$$
\sum_{i, j=1}^{n}\left[\psi\left(r_{i}\right)+\overline{\psi\left(r_{j}\right)}-\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right)\right] c_{i} \overline{c_{j}} \geq \psi(e)\left|c_{0}\right|^{2} \geq 0
$$

Corollary 3.6. Let ψ be a function on Q
(i) If $\psi \in N(Q)$, then $r \mapsto \psi(r)-\psi(e)$ is negative definite.
(ii) If $\varphi \in P(Q)$, then $r \mapsto \varphi(e)-\varphi(r)$ is negative definite.

Proof. We will use the Theorem 3.5.
(i). Conditions (3.5) and (3.6) are clearly satisfied. For the condition (3.7), let r_{1}, $\cdots, r_{n} \in Q$ and $c_{1}, \cdots, c_{n} \in C$ be given satisfying

$$
\sum_{i=1}^{n} c_{i}=0
$$

Then we find

$$
\begin{aligned}
\sum_{i, j=1}^{n} R_{r_{j}^{*}}\left(\psi\left(r_{j}\right)-\psi(e)\right) c_{i} \overline{c_{j}} & =\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}}-\psi(e)\left|\sum_{i=1}^{n} c_{i}\right|^{2} \\
& =\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}}-0 \\
& =\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} \\
& \leq 0
\end{aligned}
$$

which proves the negative definiteness of $\psi(r)-\psi(e)$.
(ii). Let $r_{1}, \cdots, r_{n} \in Q$ and $c_{1}, \cdots, c_{n} \in C$ be given satisfying

$$
\sum_{i=1}^{n} c_{i}=0 .
$$

Then we find

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left(\varphi(e)-\left(R_{r_{j}^{*}} \varphi\right)\left(r_{i}\right)\right) c_{i} \overline{c_{j}} & =-\sum_{i, j=1}^{n}\left(\left(R_{r_{j}^{*}} \varphi\right)\left(r_{i}\right)-\varphi(e)\right) c_{i} \overline{c_{j}} \\
& =-\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \varphi\right)\left(r_{i}\right) c_{i} \overline{c_{j}}+\varphi(e)\left|\sum_{i=1}^{n} c_{i}\right|^{2} \\
& =-\sum_{i, j=1}^{n}\left(R_{r_{j}^{*}} \varphi\right)\left(r_{i}\right) c_{i} \overline{c_{j}} \\
& \leq 0
\end{aligned}
$$

because $\varphi \in P(Q)$, and since the function $\varphi(e)-\varphi(r)$ clearly satisfies (i) and (ii) of Theorem 3.5, it is negative definite.

Now, we state the definition of negative definiteness in another form.
A continuous bounded function $\psi(r)(r \in Q)$ is called negative definite if the inequality

$$
\begin{equation*}
\int_{Q} \int_{Q}\left(\psi(r)+\overline{\psi(s)}-\left(R_{s^{*}} \psi\right)(r)\right) x(r) \overline{x(s)} d r d s \geq 0 \tag{3.8}
\end{equation*}
$$

holds for all $x \in L_{1}$.
If the generalized operators R_{t} extends to L_{∞} map $C_{b}(Q)$ into $C_{b}(Q \times Q)$, then the definitions of negative definiteness (3.3) and (3.8) are equivalent for the function $\psi(r) \in C_{b}(Q)$.

By the condition, we have $\left(R_{t} \phi\right)\left(s^{*}\right) \in C_{b}(Q \times Q)$, then the last inequality (3.8) clearly implies (3.3). Let us prove the converse assertion. Let Q_{n} be an increasing sequence of compact sets covering the entire Q. We consider a function $y(r) \in C_{0}(Q)$ and set $\lambda_{i}=y\left(r_{i}\right)$ in (3.7). This yields

$$
\sum_{i, j=1}^{n}\left(R_{r_{i}^{*}} \psi\right)\left(r_{j}\right) y\left(r_{i}\right) \overline{y\left(r_{j}\right)} \leq 0 .
$$

By integrating this inequality with respect to each r_{1}, \cdots, r_{n} over the sets Q_{k} $(k \in N)$ and collecting similar terms we conclude that

$$
n m\left(Q_{k}\right) \int_{Q_{k}}\left(R_{r^{*}} \psi\right)(r)|y(r)|^{2} d r+n(n-1) \int_{Q_{k}} \int_{Q_{k}}\left(R_{r^{*} *} \psi(s) y(r) \overline{y(s)} d r d s \leq 0 .\right.
$$

Further, we divide this inequality by n^{2} and pass to the limit as $n \rightarrow \infty$. We get

$$
\int_{Q_{k}} \int_{Q_{k}}\left(R_{r^{*}} \psi\right)(s) y(r) \overline{y(s)} d r d s \leq 0
$$

for each $k \in N$. By passing to the limit as $k \rightarrow \infty$ and applying Lebesgue Theorem [9], we see that the inequality

$$
\int_{Q} \int_{Q}\left(R_{r^{*}} \psi\right)(s) y(r) \overline{y(s)} d r d s \leq 0
$$

holds for all functions from $C_{0}(Q)$. Approximating an arbitrary function from L_{1} by finite continuous functions we arrive at (3.8) for all $x \in L_{1}$. Theorem 3.5 completes the conclusion of the desired equivalence.

Theorem 3.7. Let $\psi \in N(Q)$ with Re $\psi \geq 0$. Then

$$
\sqrt{\left(R_{r}(\psi)\right)(s)} \leq \sqrt{|\psi(r)|}+\sqrt{|\psi(s)|} ; \quad r, s \in Q
$$

Proof. Let $\psi \in N(Q)$, then the $n \times n$ matrix $\left(\psi\left(r_{i}\right)+\overline{\psi\left(r_{j}\right)}-\left(R_{r_{j}^{*}} \psi\right)\left(r_{i}\right)\right)$ is positive Hermitian for any $i, j=1, \cdots, n$.

Take $n=2$, and $r, s \in Q$. Since the matrix

$$
\left(\begin{array}{ll}
\psi(r)+\overline{\psi(r)}-\left(R_{r^{*}} \psi\right)(r) & \psi(r)+\overline{\psi(s)}-\left(R_{s^{*}} \psi\right)(r) \\
\psi(s)+\overline{\psi(r)}-\left(R_{r^{*}} \psi\right)(s) & \psi(s)+\overline{\psi(s)}-\left(R_{s^{*}} \psi\right)(s)
\end{array}\right)
$$

has non-negative determinant, we find, using $\left(R_{r^{*}} \psi\right)(s)=\overline{\left(R_{s^{*}} \psi\right)(r)}$, and properties (3.4).

We get

$$
\begin{aligned}
\left|\psi(r)+\overline{\psi(s)}-\left(R_{s^{*}} \psi\right)(r)\right|^{2} & \leq\left(2 \operatorname{Re} \psi(r)-\left(R_{r^{*}} \psi\right)(r)\right) \\
\left(2 \operatorname{Re} \psi(s)-\left(R_{s^{*}} \psi\right)(s)\right) & \leq 4 \operatorname{Re} \psi(r) \operatorname{Re} \psi(s) \\
& \leq 4|\psi(r)||\psi(s)|
\end{aligned}
$$

Then

$$
\left|\left(R_{s^{*}} \psi\right)(r)-\psi(r)-\overline{\psi(s)}\right| \leq 2 \sqrt{|\psi(r)|} \sqrt{|\psi(s)|}
$$

and

$$
\left|\left(R_{s^{*}} \psi\right)(r)\right| \leq(\sqrt{|\psi(r)|}+\sqrt{|\psi(s)|})^{2}
$$

Theorem 3.8. Let $\psi: Q \rightarrow C$ be a function on Q. Assume that
(i) ψ is continuous bounded and $\psi(e) \geq 0$.
(ii) $\varphi_{t}: r \rightarrow \exp (-t \psi(r))$ are positive definite for each $t>0$.

Then ψ is negative definite.
Proof. By (i) the functions φ_{t} are continuous and $\varphi_{t}(e) \leq 1$. Therefore Corollary 3.6 (ii) implies that $r \mapsto \frac{1}{t}\left(1-\varphi_{t}(r)\right)$ is negative definite for any $t>0$. Since

$$
\left|\psi(r)-\frac{1}{t}\left(1-\varphi_{t}(r)\right)\right| \leq t \exp |\psi(t)|, \quad \text { for } 0<t<1
$$

We obtain that

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(1-\varphi_{t}\right)=\psi
$$

uniformly on compact subsets of Q. Then it is easy to prove that ψ satisfy (3.3).
We do not know whether the inverse assertion of Theorem 3.8 does hold in general.

4. Negative definite functions on hypergroups

Let K be a commutative hypergroup (see [1], [2]). We define the action of generalized invariant operators $R_{r}(r \in Q)$ upon arbitrary Borel functions f on K by the formula

$$
\left(R_{r} f\right)(s)=\left(\delta_{s} * \delta_{r}\right)(f)
$$

where the convolution

$$
K \times K \ni(r, s) \mapsto \delta_{r} * \delta_{s} \in M(K)
$$

is continuous. $M(k)$ is equipped with weak topology, and δ_{r} is the Dirac measure.
A continuous function $\psi: K \rightarrow C$ is negative definite on K if for $x_{1}, \cdots, x_{n} \in$ $K, c_{1}, \cdots, c_{n} \in C$, the inequality

$$
\sum_{i, j=1}^{n}\left(\psi\left(x_{i}+\overline{\psi\left(x_{j}\right)}\right)-\delta_{x_{i}} * \delta_{\bar{x}_{j}}(\psi)\right) c_{i} \overline{c_{j}} \geq 0
$$

holds.

It is fairly easy to observe that all our studied properties and theorems of negative definite functions on hypercomplex system are easily established for the above case (see [6]).

References

[1] Ju. M. Berezanskii and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems, Kive, Naukova Dumka, 1992.
[2] Ju. M. Berezanskii and A. A. Kalyuzhnyi, Hypercomplex systems and hypergroups: Connections and distributions, Contemporary Mathematics, 183(1995), 21-44.
[3] Ju. M. Berezanskii, A. A. Kalyuzhnyi and Ju. G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic Publishers, Netherlands, Vol. 1, 1995.
[4] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlage, Berlin, Heidelberg, New York, 1980.
[5] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlage, Berlin, Heidelberg, 1975.
[6] W. R. Bloom and P. Ressel, Positive definite and related functions on hypergroups, Canad. J. Math., 43(2)(1991), 242-254.
[7] J. Delsrate, Sur une extension de la formula de Taylor, J. Math. Pures et Appl., 17(3)(1938), 213-231.
[8] J. Delsrate, Hypergroups et operateuers de permutation et de transmutation, in: Colloques Internat. Nacy, 1956, 29-44.
[9] P. Halmos, Measure Theory, van Nostrand, 1950.
[10] A. A. Kalyuzhnyi, A theorem on the existence of multiplicative measure, Ukr. Math. Zh., 35(3)(1983), 369-371.
[11] B. M. Levitan, Generalized of shift operation in connection with almost periodic functions, Mat. Sb., 7(3)(1940), 449-478.
[12] B. M. Levitan, Theory of Generalized Translation Operators, Nauka, Moscow, 1973.

[^0]: Received November 30, 2004.
 2000 Mathematics Subject Classification: 43XX.
 Key words and phrases: hypercomplex system, positive and negative definite functions, hypergroups.

