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ABSTRACT. We present a concept of negative definite functions on a commutative normal
hypercomplex system L1 (Q,m) with basis unity. Negative definite functions were studied
in [5] and [4] for commutative groups and semigroups respectively. The definition of such
functions on @ is a natural generalization of that defined on a commutative hypergroups.

1. Preliminaries

Let @ be a complete separable locally compact metric space of points p, g, r, - - -;
6(Q) is the o-algebra of Borel subsets, and By(Q) is the subring of B(Q), which
consists of sets with compact closure. We shall consider the Borel measures; i.e.,
positive regular measures on B(Q), finite on compact sets. We denote by C(Q) the
space of continuous functions on Q; Cp(Q), Coo(Q) and Cy(Q) consists respectively
of bounded, tending to zero at infinity and compactly supported functions from
C(Q).

A hypercomplex system with the basis @ is defined by its structure measure
¢(A,B,r) (A,B € B(Q);r € Q). A structure measure c(A, B, r) is a Borel measure
in A (respectively B) if we fix B, r (respectively A, r) which satisfies the following
properties:

(H1) VA, B € 30(Q), the function c¢(4, B,r) € Co(Q),

(H2) VA, B € 5y(Q) and s,r € @, the following associativity relation holds

/C(A,B,T)dTC(ET,C,S)Z/ C(B,C,r)d.C(A,E.,s), Ce€B(Q).
Q Q
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(H3) The structure measure is said to be commutative if
c¢(A,B,r)=c(B,A,r), (A, Be€ ByQ)).

A measure m is said to be a multiplicative measure if
/ ¢(A, B,r)dm(r) = m(A)m(B); A,B € [((Q).
Q

(H4) We will suppose the existence of a multiplicative measure. Under certain
restrictions imposed on the commutative structure measure, multiplicative
measure exists. (See [10]).

Consider the space Lq(Q, m) = L; of functions on @ with respect to the multi-
plicative measure m.

Theorem 1.1. For any f,g € L1(Q, m), the convolution

(1.1) (f*g)(r) = /f d/ q)dgc(Ep, Eq, 1)

/ / f(p)g(@)c(p, g, r)dm(p)dm(q)

/ / f(p)g(a)dmq(p, q)
is well defined. (See [2]).

The space Li(Q, m) with the convolution (1.1) is a Banach algebra which is
commutative if (H3) holds. This Banach algebra is called the hypercomplex system
with the basis Q.

It is obvious that C(A, B,r) = (Ka *x Kp)(r); A,B € (p(Q) and K4 is the
characteristic function of the set A.

A hypercomplex system may or may not have a unity. If a unity not included
in L1(Q,m), then it is convenient to join it formally to L.

A non zero measurable and bounded almost everywhere function Q > r —
x(r) € C is said to be a character of the hypercomplex system L; if VA, B € 5(Q)

AdABwﬂﬁWMﬂzanwh

[xiam(n) =x(©). ¢ em@.
(H5) A hypercomplex system is said to be normal, if there exists an involution

homomorphism @ 3> r — r* € @, such that m(A) = m(A4*) and ¢(A, B,C) =
c¢(C,B*,A), ¢(A,B,C) = c(A*,C, B), (A, B € 5,(Q)), where

c(A,B,C):/Cc(A,B,r)dm(r).
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(H6) A normal hypercomplex system possesses a basis unity if there exists a point
e € @ such that e* = e and

¢(A,B,e) = m(A* N B), A, B € 5(Q).
We should remark that, for a normal hypercomplex system, the mapping

Li(Q,m) 3 f(r) — f*(r) € L1(Q,m)

is an involution in the Banach algebra Lq, the multiplicative measure is unique and
the characters of such a system are continuous. (See [1]). A character x of a normal
hypercomplex system is said to be Hermitian if

X)) =x(r),  (req).

Denote the set of all bounded Hermitian characters by Xy, i.e.,

X ={xeCy(Q): x#0, /C(A B,r)x(r)dm(r) = x(A)x(B), x(r) = x(r")}.

Let L1(Q, m) be a hypercomplex system with compact basis, Q be a dual count-
able basis (collection of all characters x, ¢, %, - --), and 7 be a Plancherel measure.
The space Ll(Q, m) = l1(m) becomes a hypercomplex system with discrete basis if
we define a dual structure measure ¢ by the formula

(12) v bib) = (i) /Q XS By dm(r),  (x, 6,9 € Q)

and assume that the integral in (1.2) is nonnegative.
This dual hypercomplex system is normal if we set x* = X, and it has a basis
unity é = 1. See [2].

2. Generalized translation operators and hypercomplex system

In a series of works originated as early as in 1938, J. Delsarte [7], [8], and
then B. M. Levitan [11], [12] noticed that some facts of classical harmonic analysis
can be generalized by replacing exponential functions e (¢, A\ € R') by some
family of complex-valued functions x(g, A) which inherit the following property of
the indicated exponential functions. The exponential functions are connected with
the family of ordinary translation operators R, (p € R') acting upon complex-
valued functions f(q) (¢ € R') according to the rule

(Rpf)(q) = f(p+ ),

(2.1) R,e = ¢iMPeire
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for any A.

For functions x(g, A), where ¢ varies in some set () and A in another set Q,
there should exist a family of linear “generalized translation” operators R, (p € Q),
acting on the functions of the variable ¢ € @ such that an equality of (2.1) type is
valid. R

(Bpx (- M) (@) = x(p, A)x(a, A) (P.g€Q, AEQ).

It is natural that the family of such operators R,, should have some additional
properties, similar to a usual shift. It was clear from [8], [12] that it is important
to study not only generalized translations but a convolution of functions associated
with these translations. So by analogy with the usual convolution

(2.2) (fw%ﬁzéf@ﬂmmMWjéﬂm@wm@@,

it is possible to introduce a generalized convolution = similar to (2.2), associated
with the generalized translation operators:

(2.3) (M@@=AﬂM&@@MW)

which is equivalent to the form (1.1).

In (2.3), the involution * in @ is used instead of the inverse in R, and m is the
multiplicative measure.

Let L1(Q,m) be a hypercomplex system with a basis @ and ® be a space of
complex-valued functions on (). Assume that an operator valued function Q > p —
R, : ® — & is given such that the function g(p) = (R,f)(q) belongs to ® for
any f € ® and any fixed ¢ € Q. The operators R, (p € Q) are called generalized
translation operators, provided that the following axioms are satisfied:

(T1) Associativity axiom: The equality

(B3 (Rqf))(r) = (Ry(Rpf))(r)
holds for any elements p,q € Q.
(T2) There exists an element e € @) such that R, is the identity in ®. (See [3]).

3. Positive and negative definite functions on hypercomplex system

Let L1(Q,m) be a commutative normal hypercomplex system with basis unity.

Definition 3.1. A continuous bounded function ¢(r) (r € @) is called positive
definite if the inequality

N
(3.1) Z Aidj(Rrz)(rj) > 0
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holds for all r1,--- ,7, € Q, and A\, --- , A, € C, (n € N).
If the generalized translation operators R; extended to L., map Cy(Q) into

Ch(Q x Q), then the inequality (3.1) of positive definiteness is equivalent for the
functions ¢(r) € Cp(Q) to

// Rip)(s ya(s)dtds >0, = € L1(Q,m).

By P(Q), we shall denote the set of all continuous positive definite functions on

Q.

Theorem 3.2. Every function ¢ € P(Q) admits a unique representation in the
form of an integral

(32) o) = [ XO)uC0. € X

Xn
where p is a nonnegative finite regular measure on the space Xy. Conversely, each
function of the form (3.2) belongs to P(Q).

For the proof, see [1].
Theorem 3.2 is an analog of the Bochner theorem for hypercomplex systems.

Corollary 3.3. If p € P(Q); then the following properties holds:
(i) ¢(e) = 0;
(i) o(r*) = ¢(r) VreQ;
(iii) [o(r)] < @(e) VreQ;
[Rs () (1) < (Ro-0) () (Re= ) (1)
lo(s) = @()|* < 2p(e)[p(e) — Re(Rap)(t)] (st € Q).

(iv

)
)
)
(v)

Definition 3.4. A continuous bounded function ¥ : @ — C is called negative
definite if for any r1,--- ,r, € @ and ¢1,--- ,¢, € C

n

(3.3) ST () +90) — (Res ) ()]s > 0.

i,j=1

For example each constant function, ¢ > 0 is negative definite. Obviously the
following holds for a negative definite function 1:

(34) W(e) 20, ¥(r) =), (R.*¥)(r)eR  and
U(r) +9(r7) 2 (R )(r).

Let us abbreviate the set of negative definite functions on @ by N(Q).
We note that ¢» = ¢*, and Re 1 is non negative if (R,«)(r) > 0.
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Theorem 3.5. A function ) : Q — C is negative definite if and only if the following
conditions are satisfied:

(3.5) (i)  (e) >0, 1 is continuous bounded function

(3.6) (il) (r)=9(r*) for each re€Q, and

n
(iil) if r1, - ,rn €Q, and c1,- -+ , ¢, € C with Zcizo, then

i=1
(3.7) > (Resdh)(ri)eit; <0
ij=1
holds.
Proof. Suppose first that ¢» € N(Q). It is clear that (i) and (ii) are satisfied. Let
ne€N;ry,--,rp €Qand ¢p, -+ ,¢, € C be such that

n

ZCZ‘:O.

=1

Then we find

Il
NE
QO
N~
7N
NIE
=
3
kY
N~
+
/N
NE
£
N~
o~
NE
=
33
5
N~
|
st
A/
=
<
S~
S)
3
&

Then (iii) is satisfied.

Conversely, suppose that v satisfies (i)-(iii), and consider r1,--- 7, € @ and
¢, ,¢n € C. For the (n + 1)-tuples e,r1, -+ ,7, € @Q and cg,c1,--+ ,¢n, € C,
where

n
E C; = 0
=0

ie.,

n
Co = — E Ci,
i=1
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we get by (iii)

0 > Z (Rr; 77/1) (ri)eic;
i,j=0
= Z (Rrjq’[}) (Ti)czcj +co Z Tz C,+CO Zﬂ} CJ er} )|CO|2
ij—1 i=1
= > ((Rr*w(ﬁ) Y(ri) — 1/’(7";)) ¢icj +(e)|col®
ij=1

hence, using (i) and (ii), that

n

S7 [0 +90) = (e 0)(r)] e = v(eleol = 0. 0

ij=1

Corollary 3.6. Let v be a function on Q
(i) If¢ € N(Q), then r — (r) — (e) is negative definite.
(ii) If ¢ € P(Q), then r — w(e) — o(r) is negative definite.

Proof. We will use the Theorem 3.5.
(i). Conditions (3.5) and (3.6) are clearly satisfied. For the condition (3.7), let 71,

T € Q and ¢1,- -+, ¢, € C be given satisfying
S0
i=1
Then we find
n n n 2
> Re(i(ry) —d(e)eit; = Y (Rr; w) (ri)eie; — () Y e
i,5=1 i,7=1 i=1
= Z (RT; w> (ri)eic; — 0
ij=1
= Z (Rr]* lﬁ) (Tl)clcj
ij=1

<
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(ii). Let r1,--- ,7, € Q and ¢1,- -+ , ¢, € C be given satisfying
Z C; = 0
i=1
Then we find
5 (so(e) - <Rr;so><n->> o = =3 [(Ree)r) - so<e>>cicj
i,j=1 i,j=1

< 0

because ¢ € P(Q), and since the function ¢(e) — ¢(r) clearly satisfies (i) and (ii)
of Theorem 3.5, it is negative definite. O

Now, we state the definition of negative definiteness in another form.
A continuous bounded function ¥(r) (r € Q) is called negative definite if the
inequality

(3.8) /Q /Q <w<r>+w<s><Rs*w><r>>x<r>z<s>drdszo

holds for all z € L.

If the generalized operators R; extends to L map Cp(Q) into Cp(Q x @), then
the definitions of negative definiteness (3.3) and (3.8) are equivalent for the function
¥(r) € Gy(Q).

By the condition, we have (R:$)(s*) € Cp(Q X Q), then the last inequality
(3.8) clearly implies (3.3). Let us prove the converse assertion. Let @, be an
increasing sequence of compact sets covering the entire (). We consider a function
y(r) € Co(Q) and set \; = y(r;) in (3.7). This yields

n

> (Rm* ﬂ)) (rj)y(ri)y(r;) < 0.

ij=1

By integrating this inequality with respect to each ry,--- , 7, over the sets Qg
(k € N) and collecting similar terms we conclude that

nn(Q) /Q (R ) (M)l (r)2dr + n(n — 1) /Q /Q (R ) ()y(r)g(3)drds < 0.
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Further, we divide this inequality by n? and pass to the limit as n — co. We
get

/ k/ (Bre9)(s)y(r)y(s)drds < 0

for each k € N. By passing to the limit as £ — oo and applying Lebesgue Theorem
[9], we see that the inequality

/ /(R’“*w)(s)y(?‘)@dms <0
QRJQ

holds for all functions from Cy(Q). Approximating an arbitrary function from L; by
finite continuous functions we arrive at (3.8) for all z € L. Theorem 3.5 completes
the conclusion of the desired equivalence.

Theorem 3.7. Let ¢ € N(Q) with Ret) > 0. Then

V(R(0)(s) VIR + VI mseq.

Proof. Let ¥ € N(Q), then the n x n matrix <’(/J(’I“i) +(ry) — (RT_;zp)(ri)) is

positive Hermitian for any i,j =1,--- ,n .
Take n = 2, and r, s € Q. Since the matrix

(1/1(7“) +9(r) = (Bee)(r) () +9(s) = (Rs*w)(r))
P(s) +9(r) = (Ree9p)(s)  b(s) +9(s) = (Re-t)) ()

has non-negative determinant, we find, using (R,+%)(s) = (Rs+%)(r), and properties
(3.4).

We get
() + 95— (Ree)(r)] < (zRewr) - <Rr»«¢><r>).
<2Re¢(8)—(Rs*w)(8)> < 4Re)(r)Rey(s)
< Afp(r)[[v(s)]
Then

(R 0)(1) = 0(r) = 005)| < 216 0)IVI()
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and

|(Re- ) (r)| < (\/I¢(T)| + \/I¢(8)> : O

Theorem 3.8. Let ¢ : Q — C be a function on Q. Assume that
(i) % is continuous bounded and ¢ (e) > 0.
(i) ot :r — exp(—ty(r)) are positive definite for each t > 0.
Then 1 is negative definite.
Proof. By (i) the functions ¢; are continuous and ¢;(e) < 1. Therefore Corollary
3.6 (ii) implies that r +— ;(1 — (1)) is negative definite for any ¢ > 0. Since

1

— (1 —@)| <texplp(t)],  for0<t<l.

e(r)

We obtain that 1
}1_{% ;(1 — ) =1
uniformly on compact subsets of @. Then it is easy to prove that ¢ satisfy (3.3).00

We do not know whether the inverse assertion of Theorem 3.8 does hold in
general.

4. Negative definite functions on hypergroups

Let K be a commutative hypergroup (see [1], [2]). We define the action of
generalized invariant operators R,.(r € Q) upon arbitrary Borel functions f on K
by the formula

(er)(s) = (55 * 5r)(f)a

where the convolution
K x K > (r,s) — %8s € M(K)

is continuous. M (k) is equipped with weak topology, and 4, is the Dirac measure.
A continuous function ¥ : K — C' is negative definite on K if for z1,--- ,z, €
K, c, - ,c, € C, the inequality

> (d}(fﬂi +1(x)) = b, * 0z, W))ij 20

4,j=1

holds.
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It is fairly easy to observe that all our studied properties and theorems of nega-

tive definite functions on hypercomplex system are easily established for the above
case (see [6]).
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