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Abstract. We present a concept of negative definite functions on a commutative normal

hypercomplex system L1(Q, m) with basis unity. Negative definite functions were studied

in [5] and [4] for commutative groups and semigroups respectively. The definition of such

functions on Q is a natural generalization of that defined on a commutative hypergroups.

1. Preliminaries

Let Q be a complete separable locally compact metric space of points p, q, r, · · · ;
β(Q) is the σ-algebra of Borel subsets, and B0(Q) is the subring of B(Q), which
consists of sets with compact closure. We shall consider the Borel measures; i.e.,
positive regular measures on B(Q), finite on compact sets. We denote by C(Q) the
space of continuous functions on Q; Cb(Q), C∞(Q) and C0(Q) consists respectively
of bounded, tending to zero at infinity and compactly supported functions from
C(Q).

A hypercomplex system with the basis Q is defined by its structure measure
c(A,B, r) (A,B ∈ B(Q); r ∈ Q). A structure measure c(A,B, r) is a Borel measure
in A (respectively B) if we fix B, r (respectively A, r) which satisfies the following
properties:

(H1) ∀A,B ∈ β0(Q), the function c(A,B, r) ∈ C0(Q),

(H2) ∀A,B ∈ β0(Q) and s, r ∈ Q, the following associativity relation holds

∫

Q

c(A,B, r)drc(Er, C, s) =
∫

Q

C(B, C, r)drC(A, Er, s), C ∈ B(Q).
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(H3) The structure measure is said to be commutative if

c(A,B, r) = c(B, A, r), (A, B ∈ B0(Q)).

A measure m is said to be a multiplicative measure if
∫

Q

c(A,B, r)dm(r) = m(A)m(B); A,B ∈ β0(Q).

(H4) We will suppose the existence of a multiplicative measure. Under certain
restrictions imposed on the commutative structure measure, multiplicative
measure exists. (See [10]).

Consider the space L1(Q,m) = L1 of functions on Q with respect to the multi-
plicative measure m.

Theorem 1.1. For any f, g ∈ L1(Q, m), the convolution

(f ∗ g)(r) =
∫

Q

f(p)dp

∫

Q

g(q)dqc(Ep, Eq, r)(1.1)

=
∫

Q

∫

Q

f(p)g(q)c(p, q, r)dm(p)dm(q)

=
∫

Q

∫

Q

f(p)g(q)dmr(p, q)

is well defined. (See [2]).

The space L1(Q, m) with the convolution (1.1) is a Banach algebra which is
commutative if (H3) holds. This Banach algebra is called the hypercomplex system
with the basis Q.

It is obvious that C(A,B, r) = (KA ∗ KB)(r); A,B ∈ β0(Q) and KA is the
characteristic function of the set A.

A hypercomplex system may or may not have a unity. If a unity not included
in L1(Q,m), then it is convenient to join it formally to L1.

A non zero measurable and bounded almost everywhere function Q 3 r →
χ(r) ∈ C is said to be a character of the hypercomplex system L1 if ∀A, B ∈ β0(Q)

∫

Q

c(A,B, r)χ(r)dm(r) = χ(A)χ(B),

∫
χ(r)dm(r) = χ(C), C ∈ β0(Q).

(H5) A hypercomplex system is said to be normal, if there exists an involution
homomorphism Q 3 r → r∗ ∈ Q, such that m(A) = m(A∗) and c(A,B, C) =
c(C, B∗, A), c(A,B, C) = c(A∗, C, B), (A,B ∈ β0(Q)), where

c(A,B, C) =
∫

C

c(A,B, r)dm(r).
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(H6) A normal hypercomplex system possesses a basis unity if there exists a point
e ∈ Q such that e∗ = e and

c(A,B, e) = m(A∗ ∩B), A,B ∈ β(Q).

We should remark that, for a normal hypercomplex system, the mapping

L1(Q,m) 3 f(r) → f∗(r) ∈ L1(Q,m)

is an involution in the Banach algebra L1, the multiplicative measure is unique and
the characters of such a system are continuous. (See [1]). A character χ of a normal
hypercomplex system is said to be Hermitian if

χ(r∗) = χ(r), (r ∈ Q).

Denote the set of all bounded Hermitian characters by Xh, i.e.,

Xh = {χ ∈ Cb(Q) : χ 6= 0,

∫
c(A,B, r)χ(r)dm(r) = χ(A)χ(B), χ(r) = χ(r∗)}.

Let L1(Q,m) be a hypercomplex system with compact basis, Q̂ be a dual count-
able basis (collection of all characters χ, φ, ψ, · · · ), and m̂ be a Plancherel measure.
The space L1(Q̂, m̂) = l1(m̂) becomes a hypercomplex system with discrete basis if
we define a dual structure measure ĉ by the formula

(1.2) ĉ(χ, φ, ψ) = m̂(χ)m̂(φ)
∫

Q

χ(r)φ(r)ψ(r)dm(r), (χ, φ, ψ ∈ Q̂)

and assume that the integral in (1.2) is nonnegative.
This dual hypercomplex system is normal if we set χ∗ = χ, and it has a basis

unity ê ≡ 1. See [2].

2. Generalized translation operators and hypercomplex system

In a series of works originated as early as in 1938, J. Delsarte [7], [8], and
then B. M. Levitan [11], [12] noticed that some facts of classical harmonic analysis
can be generalized by replacing exponential functions eiλq (q, λ ∈ R1) by some
family of complex-valued functions χ(q, λ) which inherit the following property of
the indicated exponential functions. The exponential functions are connected with
the family of ordinary translation operators Rp (p ∈ R1) acting upon complex-
valued functions f(q) (q ∈ R1) according to the rule

(RP f)(q) = f(p + q),

i.e.,

(2.1) Rpe
iλq = eiλpeiλq
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for any λ.
For functions χ(q, λ), where q varies in some set Q and λ in another set Q̂,

there should exist a family of linear “generalized translation” operators Rp (p ∈ Q),
acting on the functions of the variable q ∈ Q such that an equality of (2.1) type is
valid.

(Rpχ(., λ))(q) = χ(p, λ)χ(q, λ) (p, q ∈ Q, λ ∈ Q̂).

It is natural that the family of such operators Rp should have some additional
properties, similar to a usual shift. It was clear from [8], [12] that it is important
to study not only generalized translations but a convolution of functions associated
with these translations. So by analogy with the usual convolution

(2.2) (f ∗ g)(q) =
∫

R

f(p)g(q − p)dp =
∫

R

f(p)(R−pg)(q)dp,

it is possible to introduce a generalized convolution ∗ similar to (2.2), associated
with the generalized translation operators:

(2.3) (f ∗ g)(q) =
∫

Q

f(p)(Rp∗g)(q)dm(p)

which is equivalent to the form (1.1).
In (2.3), the involution ∗ in Q is used instead of the inverse in R, and m is the

multiplicative measure.
Let L1(Q,m) be a hypercomplex system with a basis Q and Φ be a space of

complex-valued functions on Q. Assume that an operator valued function Q 3 p →
Rp : Φ → Φ is given such that the function g(p) = (Rpf)(q) belongs to Φ for
any f ∈ Φ and any fixed q ∈ Q. The operators Rp (p ∈ Q) are called generalized
translation operators, provided that the following axioms are satisfied:

(T1) Associativity axiom: The equality

(Rq
p(Rqf))(r) = (Rr

q(Rpf))(r)

holds for any elements p, q ∈ Q.

(T2) There exists an element e ∈ Q such that Re is the identity in Φ. (See [3]).

3. Positive and negative definite functions on hypercomplex system

Let L1(Q, m) be a commutative normal hypercomplex system with basis unity.

Definition 3.1. A continuous bounded function ϕ(r) (r ∈ Q) is called positive
definite if the inequality

(3.1)
N∑

i,j=1

λiλj(Rr∗i ϕ)(rj) ≥ 0
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holds for all r1, · · · , rn ∈ Q, and λ1, · · · , λn ∈ C, (n ∈ N).
If the generalized translation operators Rt extended to L∞ map Cb(Q) into

Cb(Q × Q), then the inequality (3.1) of positive definiteness is equivalent for the
functions ϕ(r) ∈ Cb(Q) to

∫

Q

∫

Q

(Rtϕ)(s∗)x(t)x(s)dtds ≥ 0, x ∈ L1(Q,m).

By P (Q), we shall denote the set of all continuous positive definite functions on
Q.

Theorem 3.2. Every function ϕ ∈ P (Q) admits a unique representation in the
form of an integral

(3.2) ϕ(r) =
∫

Xh

χ(r)dµ(χ), χ ∈ Xh,

where µ is a nonnegative finite regular measure on the space Xh. Conversely, each
function of the form (3.2) belongs to P (Q).

For the proof, see [1].
Theorem 3.2 is an analog of the Bochner theorem for hypercomplex systems.

Corollary 3.3. If ϕ ∈ P (Q); then the following properties holds:

(i) ϕ(e) ≥ 0;

(ii) ϕ(r∗) = ϕ(r) ∀ r ∈ Q;

(iii) |ϕ(r)| ≤ ϕ(e) ∀ r ∈ Q;

(iv) |Rs(ϕ)(t)|2 ≤ (Rs∗ϕ)(s)(Rt∗ϕ)(t);

(v) |ϕ(s)− ϕ(t)|2 ≤ 2ϕ(e)[ϕ(e)−Re(Rsϕ)(t∗)] (s, t ∈ Q).

Definition 3.4. A continuous bounded function ψ : Q → C is called negative
definite if for any r1, · · · , rn ∈ Q and c1, · · · , cn ∈ C

(3.3)
n∑

i,j=1

[ψ(ri) + ψ(rj)− (Rr∗j ψ)(ri)]cicj ≥ 0.

For example each constant function, c ≥ 0 is negative definite. Obviously the
following holds for a negative definite function ψ:

ψ(e) ≥ 0, ψ(r) = ψ(r∗), (Rr ∗ ψ)(r) ∈ R and(3.4)
ψ(r) + ψ(r∗) ≥ (Rr∗ψ)(r).

Let us abbreviate the set of negative definite functions on Q by N(Q).
We note that ψ = ψ∗, and Re ψ is non negative if (Rr∗ψ)(r) ≥ 0.
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Theorem 3.5. A function ψ : Q → C is negative definite if and only if the following
conditions are satisfied:

(i) ψ(e) ≥ 0, ψ is continuous bounded function(3.5)
(ii) ψ(r) = ψ(r∗) for each r ∈ Q, and(3.6)

(iii) if r1, · · · , rn ∈ Q, and c1, · · · , cn ∈ C with

n∑

i=1

ci = 0, then

n∑

i,j=1

(Rr∗j ψ)(ri)cicj ≤ 0(3.7)

holds.

Proof. Suppose first that ψ ∈ N(Q). It is clear that (i) and (ii) are satisfied. Let
n ∈ N ; r1, · · · , rn ∈ Q and c1, · · · , cn ∈ C be such that

n∑

i=1

ci = 0.

Then we find

0 ≤
n∑

i,j=1

(
ψ(ri) + ψ(rj)− (Rr∗j )(ri)

)
cicj

=

(
n∑

j=1

cj

)(
n∑

i=1

ψ(ri)ci

)
+

(
n∑

i=1

ci

)(
n∑

j=1

ψ(rj)cj

)
−

n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj

= −
n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj .

Then (iii) is satisfied.
Conversely, suppose that ψ satisfies (i)-(iii), and consider r1, · · · , rn ∈ Q and

c1, · · · , cn ∈ C. For the (n + 1)-tuples e, r1, · · · , rn ∈ Q and c0, c1, · · · , cn ∈ C,
where

n∑

i=0

ci = 0

i.e.,

c0 = −
n∑

i=1

ci,
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we get by (iii)

0 ≥
n∑

i,j=0

(
Rr∗j ψ

)
(ri)cicj

=
n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj + c0

n∑

i=1

ψ(ri)ci + c0

n∑

j=1

ψ(r∗j )cj + ψ(e)|c0|2

=
n∑

i,j=1

(
(Rr∗j ψ)(ri)− ψ(ri)− ψ(r∗j )

)
cicj + ψ(e)|c0|2

hence, using (i) and (ii), that

n∑

i,j=1

[
ψ(ri) + ψ(rj)− (Rr∗j ψ)(ri)

]
cicj ≥ ψ(e)|c0|2 ≥ 0. ¤

Corollary 3.6. Let ψ be a function on Q

(i) If ψ ∈ N(Q), then r 7→ ψ(r)− ψ(e) is negative definite.

(ii) If ϕ ∈ P (Q), then r 7→ ϕ(e)− ϕ(r) is negative definite.

Proof. We will use the Theorem 3.5.
(i). Conditions (3.5) and (3.6) are clearly satisfied. For the condition (3.7), let r1,
· · · , rn ∈ Q and c1, · · · , cn ∈ C be given satisfying

n∑

i=1

ci = 0.

Then we find

n∑

i,j=1

Rr∗j (ψ(rj)− ψ(e))cicj =
n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj − ψ(e)

∣∣∣∣∣
n∑

i=1

ci

∣∣∣∣∣

2

=
n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj − 0

=
n∑

i,j=1

(
Rr∗j ψ

)
(ri)cicj

≤ 0

which proves the negative definiteness of ψ(r)− ψ(e).
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(ii). Let r1, · · · , rn ∈ Q and c1, · · · , cn ∈ C be given satisfying

n∑

i=1

ci = 0.

Then we find

n∑

i,j=1

(
ϕ(e)− (Rr∗j ϕ)(ri)

)
cicj = −

n∑

i,j=1

(
(Rr∗j ϕ)(ri)− ϕ(e)

)
cicj

= −
n∑

i,j=1

(
Rr∗j ϕ

)
(ri)cicj + ϕ(e)

∣∣∣∣∣
n∑

i=1

ci

∣∣∣∣∣

2

= −
n∑

i,j=1

(
Rr∗j ϕ

)
(ri)cicj

≤ 0

because ϕ ∈ P (Q), and since the function ϕ(e) − ϕ(r) clearly satisfies (i) and (ii)
of Theorem 3.5, it is negative definite. ¤

Now, we state the definition of negative definiteness in another form.
A continuous bounded function ψ(r) (r ∈ Q) is called negative definite if the

inequality

(3.8)
∫

Q

∫

Q

(
ψ(r) + ψ(s)− (Rs∗ψ)(r)

)
x(r)x(s)drds ≥ 0

holds for all x ∈ L1.
If the generalized operators Rt extends to L∞ map Cb(Q) into Cb(Q×Q), then

the definitions of negative definiteness (3.3) and (3.8) are equivalent for the function
ψ(r) ∈ Cb(Q).

By the condition, we have (Rtφ)(s∗) ∈ Cb(Q × Q), then the last inequality
(3.8) clearly implies (3.3). Let us prove the converse assertion. Let Qn be an
increasing sequence of compact sets covering the entire Q. We consider a function
y(r) ∈ C0(Q) and set λi = y(ri) in (3.7). This yields

n∑

i,j=1

(
Rr∗i ψ

)
(rj)y(ri)y(rj) ≤ 0.

By integrating this inequality with respect to each r1, · · · , rn over the sets Qk

(k ∈ N) and collecting similar terms we conclude that

nm(Qk)
∫

Qk

(Rr∗ψ)(r)|y(r)|2dr + n(n− 1)
∫

Qk

∫

Qk

(Rr∗ψ)(s)y(r)y(s)drds ≤ 0.
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Further, we divide this inequality by n2 and pass to the limit as n → ∞. We
get ∫

Qk

∫

Qk

(Rr∗ψ)(s)y(r)y(s)drds ≤ 0

for each k ∈ N . By passing to the limit as k →∞ and applying Lebesgue Theorem
[9], we see that the inequality

∫

Q

∫

Q

(Rr∗ψ)(s)y(r)y(s)drds ≤ 0

holds for all functions from C0(Q). Approximating an arbitrary function from L1 by
finite continuous functions we arrive at (3.8) for all x ∈ L1. Theorem 3.5 completes
the conclusion of the desired equivalence.

Theorem 3.7. Let ψ ∈ N(Q) with Reψ ≥ 0. Then

√
(Rr(ψ))(s) ≤

√
|ψ(r)|+

√
|ψ(s)| ; r, s ∈ Q.

Proof. Let ψ ∈ N(Q), then the n × n matrix

(
ψ(ri) + ψ(rj) − (Rr∗j ψ)(ri)

)
is

positive Hermitian for any i, j = 1, · · · , n .
Take n = 2, and r, s ∈ Q. Since the matrix




ψ(r) + ψ(r)− (Rr∗ψ)(r) ψ(r) + ψ(s)− (Rs∗ψ)(r)

ψ(s) + ψ(r)− (Rr∗ψ)(s) ψ(s) + ψ(s)− (Rs∗ψ)(s)




has non-negative determinant, we find, using (Rr∗ψ)(s) = (Rs∗ψ)(r), and properties
(3.4).

We get

∣∣∣ψ(r) + ψ(s)− (Rs∗ψ)(r)
∣∣∣
2

≤
(

2Reψ(r)− (Rr∗ψ)(r)

)
.

(
2Reψ(s)− (Rs∗ψ)(s)

)
≤ 4Reψ(r)Reψ(s)

≤ 4|ψ(r)||ψ(s)|.

Then ∣∣∣(Rs∗ψ)(r)− ψ(r)− ψ(s)
∣∣∣ ≤ 2

√
|ψ(r)|

√
|ψ(s)|
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and

|(Rs∗ψ)(r)| ≤
(√

|ψ(r)|+
√
|ψ(s)|

)2

. ¤

Theorem 3.8. Let ψ : Q → C be a function on Q. Assume that

(i) ψ is continuous bounded and ψ(e) ≥ 0.

(ii) ϕt : r → exp(−tψ(r)) are positive definite for each t > 0.

Then ψ is negative definite.

Proof. By (i) the functions ϕt are continuous and ϕt(e) ≤ 1. Therefore Corollary

3.6 (ii) implies that r 7→ 1
t
(1− ϕt(r)) is negative definite for any t > 0. Since

∣∣∣∣ψ(r)− 1
t
(1− ϕt(r))

∣∣∣∣ ≤ t exp |ψ(t)|, for 0 < t < 1.

We obtain that
lim
t→0

1
t
(1− ϕt) = ψ

uniformly on compact subsets of Q. Then it is easy to prove that ψ satisfy (3.3).¤
We do not know whether the inverse assertion of Theorem 3.8 does hold in

general.

4. Negative definite functions on hypergroups

Let K be a commutative hypergroup (see [1], [2]). We define the action of
generalized invariant operators Rr(r ∈ Q) upon arbitrary Borel functions f on K
by the formula

(Rrf)(s) = (δs ∗ δr)(f),

where the convolution

K ×K 3 (r, s) 7→ δr ∗ δs ∈ M(K)

is continuous. M(k) is equipped with weak topology, and δr is the Dirac measure.
A continuous function ψ : K → C is negative definite on K if for x1, · · · , xn ∈

K, c1, · · · , cn ∈ C, the inequality

n∑

i,j=1

(
ψ(xi + ψ(xj))− δxi ∗ δxj (ψ)

)
cicj ≥ 0

holds.
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It is fairly easy to observe that all our studied properties and theorems of nega-
tive definite functions on hypercomplex system are easily established for the above
case (see [6]).
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