Finite Type Invariants and Virtual Twist Moves of Virtual Knots

  • Received : 2005.06.27
  • Published : 2006.09.23

Abstract

Generalizing twist moves of classical knots, we introduce $t(a_1,{\cdots},a_m)$-moves of virtual knots for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots and Gauss diagram formulae giving combinatorial presentations of finite type invariants. By using the Gauss diagram formulae for the finite type invariants of degree 2, we give a necessary condition for a virtual long knot K to be transformed to a virtual long knot K' by a finite sequence of $t(a_1,{\cdots},a_m)$-moves for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers with the same sign.

Keywords

References

  1. D. Bar-Natan, On the Vassiliev knot invariant, Topology, 34(1995), 423-427. https://doi.org/10.1016/0040-9383(95)93237-2
  2. J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., 111(1993), 225-270. https://doi.org/10.1007/BF01231287
  3. J. H. Conway, An enumeration of knots and links, Computational Problems in Abstract Algebra, (1969), 329-358.
  4. M. Goussarov, M. Polyak and O. Viro, Finite type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  5. V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12(1985), 103-112. https://doi.org/10.1090/S0273-0979-1985-15304-2
  6. M.-J. Jeong and C.-Y. Park, Vassiliev invariants and double dating tangle, J. of Knot Theory and Its Ramifications, 11(4)(2002), 527-544. https://doi.org/10.1142/S0218216502001809
  7. M.-J. Jeong and C.-Y. Park, Vassiliev invariants and Knot polynomials, Topology and Its Applications, 124(3)(2002), 505-521. https://doi.org/10.1016/S0166-8641(01)00257-7
  8. M.-J. Jeong, Eun-Jin Kim and C.-Y. Park, Twist moves and Vassiliev invariants, J. of Knot Theory and Its Ramifications, 13(2004), 719-735. https://doi.org/10.1142/S021821650400341X
  9. L. H. Kauffman, State models and the Jones polynomial, Topology, 26(1987), 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
  10. L. H. Kauffman, Virtual knot theory, Europ. J. Combinatorics, 20(1999), 663-691. https://doi.org/10.1006/eujc.1999.0314
  11. S. Kinoshita, On Wendt's theorem of knots I, Osaka Math. J., 9(1)(1957), 61-66.
  12. K. Murasugi, Knot Theory and Its Applications, Birkhauser, 1996.
  13. O.-P. Ostlund, Preprint Upsala University, 1997.
  14. M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, International Math. Research Notices, 11(1994), 445-453.
  15. V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and It's Applications edited by V. I. Arnold, Advances in Soviet Mathematics, Vol. 1, AMS, 1990.