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Abstract. In this paper, we deal with the uniqueness of meromorphic functions con-

cerning one question of Gross (see [5, Question 6]), and obtain some results that are

improvements of that of former authors. Moreover, the example shows that the result is

sharp.

1. Introduction and main results

In this paper, the term “meromorphic” will always mean meromorphic in the
complex plane C. We assume that the reader is familiar with the basic results and
notations of Nevanlinna’s value distribution theory (see [6]), such as T (r, f), N(r, f)
and m(r, f). Meanwhile, we need the following notations. Let f(z) be a meromor-
phic function. We denote by n1)(r, f) the number of simple poles of f in |z| ≤ r,
N1)(r, f) is defined in terms of n1)(r, f) in the usual way (see [19]). We further
define

δ1)(∞, f) = 1− lim sup
r→∞

N1)(r, f)
T (r, f)

.

By the definition of N1)(r, f), we have

N1)(r, f) ≤ N(r, f) ≤ 1
2

N1)(r, f) +
1
2

N(r, f) ≤ 1
2

N1)(r, f) +
1
2

T (r, f).

From this we obtain

(1)
1
2

δ1)(∞, f) ≤ 1
2

δ1)(∞, f) +
1
2

δ(∞, f) ≤ Θ(∞, f) ≤ δ1)(∞, f).
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Let S be a subset of distinct elements in Ĉ. Define

E(S, f) =
⋃

a∈S

{z|f(z)− a = 0, counting multiplicity},

E(S, f) =
⋃

a∈S

{z|f(z)− a = 0, ignoring multiplicity}.

Let f and g be two nonconstant meromorphic functions. If E(S, f) = E(S, g), we
say f and g share the set S CM (counting multiplicity). If E(S, f) = E(S, g), we
say f and g share the set S IM (ignoring multiplicity). Especially, let S = {a},
where a ∈ Ĉ, we say f and g share the value a CM if E(S, f) = E(S, g), and say f
and g share the value a IM if E(S, f) = E(S, g) (see [19]).

In [5] F. Gross proved that there exist three finite sets Sj (j = 1, 2, 3) such that
any two nonconstant entire functions f and g satisfying E(Sj , f) = E(Sj , g) for
j = 1, 2, 3 must be identical, and asked the following question (see [5, Question 6]):

Question A. Can one find two (even one set) finite sets Sj (j = 1, 2) such that
any two entire functions f and g satisfying E(Sj , f) = E(Sj , g) (j = 1, 2) must be
identical?

H. Yi seems to have been the first to draw the affirmative answer to the above
question A completely (see [14]). Since then, many results have been obtained for
this and related topics (see [2], [3], [8]-[13], [16] and [17]).

In 1995, H. Yi proved the following theorems.

Theorem A ([18]). Let S1 = {w|wn + awn−1 + b = 0}, where n (≥ 7) is an
integer, a and b are two nonzero constants such that the algebraic equation wn +
awn−1 + b = 0 has no multiple roots. If f and g are two entire functions satisfying
E(S1, f) = E(S1, g), then f ≡ g.

Theorem B ([16]). Let S1 be defined as Theorem A and S2 = {∞}. If f and g
are two distinct meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2
and n ≥ 9, then

f(z) = −ah(hn−1 − 1)
hn − 1

, g(z) = −a(hn−1 − 1)
hn − 1

,

where h is a nonconstant meromorphic function.

Afterwards, I. Lahiri proved the result as follows.

Theorem C ([7]). Let S1 be defined as Theorem A and S2 = {∞}. Assume that
f and g are two meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2.
If f has no simple poles and n ≥ 8, then f ≡ g.

Recently, M. Fang and I. Lahiri improved Theorem C.
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Theorem D ([1]). Let S1 be defined as Theorem A and S2 = {∞}. Assume that
f and g are two meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2.
If f has no simple poles and n ≥ 7, then f ≡ g.

In this paper, we prove the following theorems, which improve the above results.

Theorem 1. The condition changed from n ≥ 9 to n ≥ 8, Theorem B still holds.

Theorem 2. Let S1 be defined as Theorem A and S2 = {∞}. Assume that f and g
are two meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2. If n ≥ 8
and Θ(∞, f) > 2

n−1 , then f ≡ g.

Remark 1. The following example shows that Theorem 2 is sharp.

Example 1. Let

f(z) = −ah(hn−1 − 1)
(hn − 1)

, g(z) = −a(hn−1 − 1)
(hn − 1)

,

where h = u2ez−u
ez−1 and u = exp 2πi

n . It is easy to see that f and g satisfy E(Sj , f) =
E(Sj , g) for j = 1, 2, and Θ(∞, f) = 2

n−1 . However, f 6≡ g. This shows that the
assumption “Θ(∞, f) > 2

n−1” in Theorem 2 is best possible.

Theorem 3. Let S1 be defined as Theorem A and S2 = {∞}. Assume that f and
g are meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2. If n ≥ 7
and Θ(∞, f) > 1/2, then f ≡ g.

Theorem 4. Let S1 be defined as Theorem A and S2 = {∞}. Assume that f and
g are meromorphic functions satisfying E(Sj , f) = E(Sj , g) for j = 1, 2 . If n ≥ 7
and δ1)(∞, f) > 9/14, then f ≡ g.

Remark 2. Obviously, if f has no simple poles, then δ1)(∞, f) = 1, so Theorem 4
improve Theorem C and Theorem D. In case that f is an entire function, we have
Θ(∞, f) = δ1)(∞, f) = 1, so both of Theorem 3 and Theorem 4 improve Theorem
A.

2. Some Lemmas

In order to prove the theorems, we need the following results.

Lemma 1 ([19]). Let f be a nonconstant meromorphic function and let

R(f) =
n∑

k=0

akfk/

m∑

j=0

bjf
j

be an irreducible rational function in f with constant coefficients {ak} and {bj},
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where an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n, m}.
Below, let f and g be two nonconstant meromorphic functions, and S1 =

{w|wn−1(w + a) + b = 0}, where n (≥ 7) is an integer, a and b are two nonzero
constants such that the algebraic equation wn−1(w + a) + b = 0 has no multiple
roots. We denote by

(2) F = −fn−1(f + a)
b

, G = −gn−1(g + a)
b

.

Obviously, if E(S1, f) = E(S1, g) then F and G share 1 CM.

Lemma 2. Suppose that and Θ(∞, f) > 2
n−1 and F ≡ G, where F and G are

defined as (2), then f ≡ g.

Proof. Suppose that f 6≡ g. Since F ≡ G, we have

(3) fn(f + a) = gn(g + a),

We assume that f
g = h, where h is a meromorphic function. By f 6≡ g, we obtain

that h 6≡ 1. From (3) we deduce

(4) f(z) = −ah(hn−1 − 1)
(hn − 1)

, g(z) = −a(hn−1 − 1)
(hn − 1)

.

Now we distinguish the following two cases.
Case 1. If h is a constant, then it follows from (4) that f is also constant. This

is a contradiction.
Case 2. Suppose that h is nonconstant, by Lemma 1 and (4), we have

(5) T (r, f) = (n− 1)T (r, h) + S(r, f).

In addition, suppose that cj ∈ C \ {1}(j = 1, 2, . . . , n− 1) are the distinct roots
of algebra equation wn − 1 = 0. Using the second main theorem, from (4) we have

(6) N(r, f) =
n−1∑

j=1

N(r,
1

h− cj
) ≥ (n− 3)T (r, h) + S(r, h).

It follows from (5) and (6) that Θ(∞, f) ≤ 2
n−1 . This contradicts Θ(∞, f) >

2
n−1 .

This completes the proof of Lemma 2. ¤

Lemma 3. Let Sj (j = 1, 2) be defined as in Theorem 3, and let F and G be defined
as (2). If E(Sj , f) = E(Sj , g) for j = 1, 2 and F 6≡ G, then

(7) N(r, f) = N(r, g) ≤ 2
n− 1

(T (r, f) + T (r, g)) + S(r, f) + S(r, g),
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and

(8) N(r, f) = N(r, g) ≤ 2
13

(T (r, f) + T (r, g)) +
7
13

N1)(r, f) + S(r, f) + S(r, g).

Proof. Set

(9) H := (
F ′

F − 1
− G′

G− 1
)− (

F ′

F
− G′

G
),

then

H =
F ′

F (F − 1)
− G′

G(G− 1)
.

It follows that

(10) N(r,H) ≤ N(r,
1
f

) + N(r,
1
g
) + N(r,

1
f + a

) + N(r,
1

g + a
).

Therefore, by a logarithmic derivative theorem and (10), we get that

(11) T (r,H) ≤ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g).

We discuss the following two cases.
Case 1. Suppose that H ≡ 0. By integration, we have from (9)

(12)
F − 1

F
= B

G− 1
G

,

where B is nonzero constant. Since F 6≡ G, we have B 6= 1. Again by (12), we
deduce that ∞ is a Picard exceptional value of f . Therefore, (7) and (8) hold.

Case 2. Suppose that H 6≡ 0. Assume that z1 is a pole of f with multiplicity
p, then an elementary calculation gives that z1 is the zero of H with multiplicity at
least np− 1. From this and (11), we obtain

(2n− 1) N(r, f)− nN1)(r, f) ≤ N(r,
1
H

)(13)

≤ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g).

Noting that (2n−1)N(r, f)−nN1)(r, f) ≥ (n−1)N(r, f), we obtain from (13)
that (7) holds. Again by (13), we have

(2n− 1)N(r, f) ≤ 2T (r, f) + 2T (r, g) + nN1)(r, f) + S(r, f) + S(r, g).

It follows from n ≥ 7 that (8) holds.
This completes the proof of Lemma 3. ¤
Finally, we need the following important lemma due to Yi (see [15]). We first

introduce some notations.



442 Hong-Xun Yi and Wei-Chuan Lin

Let F (z) be a meromorphic function, we denote by n2(r, F ) the number of poles
of F in |z| ≤ r, where a simple pole is counted once and a multiple pole is counted
two times, N2(r, F ) is defined as the counting function of n2(r, F ). Moreover, we
denote by E any set with finite linear measure.

Lemma 4. Let F and G be two nonconstant meromorphic functions such that F
and G share 1, ∞ CM. If

N2(r,
1
F

) + N2(r,
1
G

) + 2 N(r, F ) < λ T (r) + S(r),

where λ < 1, T (r) = max{T (r, F ), T (r,G)} and S(r) = o{T (r)} (r → ∞, r 6∈ E),
then F ≡ G or F G ≡ 1.

3. Proof of main results

Proof of Theorem 1. We define F and G as (2), then F and G share 1 CM.
Suppose that F 6≡ G. Lemma 3 implies that

(14) N(r, f) ≤ 2
n− 1

(T (r, f) + T (r, g)) + S(r).

Therefore, we have

N2(r,
1
F

) + N2(r,
1
G

) + 2N(r, F )(15)

≤ 2N(r,
1
f

) + 2N(r,
1
g
) + N(r,

1
f + a

) + N(r,
1

g + a
) + 2N(r, f) + S(r)

≤ 3T (r, f) + 3T (r, g) + 2 N(r, F ) + S(r).

Set T1(r) := max{T (r, f), T (r, g)}, then we obtain from (2) that

(16) T (r) = nT1(r) + O(1),

where T (r) = max{T (r, F ), T (r,G)}. From (14), (15) and (16) we deduce that

(17) N2(r,
1
F

) + N2(r,
1
G

) + 2 N(r, F ) ≤ 6 + 8
n−1

n
T (r) + S(r).

Since n ≥ 8, we have 6 + 8
n−1 < n. Using Lemma 4, we have F G ≡ 1. From (2) we

obtain

(18) fn (f + a) gn (g + a) ≡ b2.

Since E(S2, f) = E(S2, g), from (18), we obtain that 0, −a and ∞ are all Picard
exceptional values of f . This is a contradiction. And hence, we obtain that F ≡ G,
i.e.,

(19) fn−1(f + a) ≡ gn−1(g + a).
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Let h = f
g , then h 6≡ 1. Therefore, by (19) we get that Theorem 1 holds. ¤

Proof of Theorem 2. By Theorem 1, we have f ≡ g or

(20) f(z) = −ah(hn−1 − 1)
hn − 1

, g(z) = −a(hn−1 − 1)
hn − 1

,

where h is a nonconstant meromorphic function. If f 6≡ g, from (20) we could
deduce that Θ(∞, f) ≤ 2

n−1 , which is a contradiction. Therefore, f ≡ g. ¤

Proof of Theorem 3. If n ≥ 8, by Theorem 2 and Θ(∞, f) > 1
2 > 2

n−1 , we get
that f ≡ g. Next we assume that n = 7. Proceeding as in the proof of Theorem 1,
we have (15) and (16). From (15) and (16), we deduce that

(21) N2(r,
1
F

) + N2(r,
1
G

) + 2 N(r, F ) ≤ 8− 2 Θ(∞, f)
7

T (r) + S(r).

Noting that 8−2Θ(∞, f) < 7 when Θ(∞, f) > 1/2, and using Lemma 4 and Lemma
2, we also obtain the conclusion of Theorem 3. ¤

Proof of Theorem 4. Suppose that n ≥ 8. From (1), we get Θ(∞, f) ≥
1
2δ1)(∞, f) > 2

n−1 . Therefore, by Theorem 2, we have f ≡ g. Next we assume
that n = 7. Proceeding as in the proof of Theorem 1, we also have (15) and (16).
From (8) and (16), we deduce that

(22) N2(r,
1
F

) + N2(r,
1
G

) + 2 N(r, F ) ≤ 86
13

T1(r) +
14
13

N1)(r, f) + S(r).

From (19) and (22) we obtain

N2(r,
1
F

) + N2(r,
1
G

) + 2N(r, F ) ≤
100
13 − 14

13 δ1)(∞, f)
7

T (r) + S(r).

Noting that δ1)(∞, f) > 9/14 and using Lemma 4 and a similar method to the
above proof, we obtain the conclusion of Theorem 4. ¤

4. Applications

As an application of Theorem 4, we obtain the following result.

Theorem 5. Let S1, S2 be defined as in Theorem 4. For a positive integer k, if
f and g are meromorphic functions satisfying E(Sj , f

(k)) = E(Sj , g
(k)) for j = 1, 2

and n ≥ 7, then f (k) ≡ g(k).
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