
KYUNGPOOK Math. J. 46(2006), 425-431
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Abstract. In this paper, by introducing three parameters A, B and λ, and estimating

the weight coefficient, we give a new extension of Hardy-Hilbert’s inequality with a best

constant factor, involving the Beta function. As applications, we consider its equivalent

inequality.

1. Introduction

If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, such that 0 <
∑∞

n=1 ap
n < ∞ and

0 <
∑∞

n=1 bq
n < ∞, then the famous Hardy-Hilbert’s inequality is given by

(1)
∞∑

n=1

∞∑
m=1

ambn

m + n
<

π

sin(π/p)
{
∞∑

n=1

ap
n}1/p{

∞∑
n=1

bq
n}1/q,

where the constant factor π
sin(π/p) is the best possible. Its equivalent inequality is

(2)
∞∑

n=1

( ∞∑
m=1

am

m + n

)p

<

[
π

sin(π/p)

]p ∞∑
n=1

ap
n,

where the constant factor [ π
sin(π/p) ]

p is still the best possible (see [1]).
Inequality (1) and (2) are important in analysis and its applications (see [2]).

In recent years, (1) had been strengthened by [3], [4] as

(3)
∞∑

n=1

∞∑
m=1

ambn

m + n
< {

∞∑
n=1

[
π

sin(π
p )
− 1− γ

n1/p
]ap

n}
1
p {

∞∑
n=1

[
π

sin(π
p )
− 1− γ

n1/q
]bq

n}
1
q ,

where 1− γ = 0.42278433+ (γ = 0.57721566+ is Euler constant).
By introducing three parameters A, B and λ, Yang et al. [5] gave a generaliza-

tion of (1) as

(4)
∞∑

n=1

∞∑
m=1

ambn

(Am + Bn)λ
<

B(ϕλ(p), ϕλ(q))
Aϕλ(p)Bϕλ(q)

{
∞∑

n=1

n1−λap
n}

1
p {

∞∑
n=1

n1−λbq
n}

1
q ,
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where the constant factor B(ϕλ(p),ϕλ(q))

Aϕλ(p)Bϕλ(q) (ϕλ(r) = r+λ−2
r , λ > 2 − r, r = p, q) is

still the best possible (B(u, v) is the Beta function). For A = B = 1, inequality (4)
reduces to

∞∑
n=1

∞∑
m=1

ambn

(m + n)λ
(5)

< B(
p + λ− 2

p
,
q + λ− 2

q
){

∞∑
n=1

n1−λap
n}

1
p {

∞∑
n=1

n1−λbq
n}

1
q .

Both (4) and (5) are generalizations of (1).
The main objective of this paper is to estimate the following weight coefficient:

ωλ(A,B, p, m)(6)

=
∞∑

n=1

m(1−λ)(p−1)(Am)(1−λ/q)(p−1)

(Am + Bn)λ(Bn)1−λ/p
(A,B > 0, 0 < λ ≤ p, m ∈ N)

and then to obtain a new inequality related to the double series

∞∑
n=1

∞∑
m=1

ambn

(Am + Bn)λ

with a best constant factor, but different from (4).
We need some lemmas and the following formula of the Beta function (see [6]):

(7) B(u, v) =
∫ ∞

0

t−1+u

(1 + t)u+v
dt = B(v, u) (u, v > 0).

2. Some lemmas

Lemma 2.1. If p > 1, 1
p + 1

q = 1, 0 < λ ≤ p and A, B > 0, ωλ(A,B, p,m) is
defined by (6), then for any m ∈ N , we have

(8) ωλ(A,B, p, m) <
1

A(λ−1)(p−1)B
B(

λ

p
,
λ

q
).

Proof. Since 0 < λ ≤ p and A,B > 0, we have

ωλ(A,B, p,m) < m(1−λ)(p−1)(Am)(1−
λ
q )(p−1)

∫ ∞

0

1
(Am + By)λ(By)1−λ/p

dy.

Putting u = (By)/(Am) in the above inequality, we obtain

ωλ(A,B, p,m) <
1

A(λ−1)(p−1)B

∫ ∞

0

u−1+λ/p

(1 + u)λ
du.
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Hence by (7), we have (8). The lemma is proved. ¤

Note. If 0 < λ ≤ q, by (8) and (7), for any n ∈ N , we also have

(9) ωλ(B, A, q, n) =
∞∑

n=1

m(1−λ)(q−1)(Bn)(1−λ/p)(q−1)

(Bn + Am)λ(Am)1−λ/q
<

1
B(λ−1)(q−1)A

B(
λ

p
,

λ

q
).

Lemma 2.2. If p > 1, 1
p + 1

q = 1, 0 < λ ≤ min{p, q} and 0 < ε < λ(q − 1), then
we have

I =
∞∑

n=1

∞∑
m=1

1
(Am + Bn)λ

mλ−1−λ+ε
p nλ−1−λ+ε

q(10)

> A−
λ−ε

q B
ε
q−λ

p {1
ε
B(

λ

p
− ε

q
,
λ + ε

q
)− (

λ

p
− ε

q
)−2(

B

A
)

λ
p− ε

q }.

Proof. We have λ− 1− λ+ε
r < 0 (r = p, q) and λ

p − ε
q > 0. Hence we find

I >

∫ ∞

1

xλ−1−λ+ε
p [

∫ ∞

0

1
(Ax + By)λ

yλ−1−λ+ε
q dy]dx.

Setting u = (By)/(Ax) in the above integral, we obtain

I > A−
λ−ε

q B
ε
q−λ

p

∫ ∞

1

x−1−ε[
∫ ∞

B/(Ax)

1
(1 + u)λ

u−1+ λ
p− ε

q du]dx

= A−
λ−ε

q B
ε
q−λ

p {
∫ ∞

1

x−1−ε[
∫ ∞

0

1
(1 + u)λ

u−1+ λ
p− ε

q du]dx

−
∫ ∞

1

x−1−ε[
∫ B/(Ax)

0

1
(1 + u)λ

u−1+ λ
p− ε

q du]dx}

> A−
λ−ε

q B
ε
q−λ

p {1
ε

∫ ∞

0

u−1+ λ
p− ε

q

(1 + u)λ
du−

∫ ∞

1

x−1[
∫ B/(Ax)

0

u−1+ λ
p− ε

q du]dx}

= A−
λ−ε

q B
ε
q−λ

p {1
ε

∫ ∞

0

u−1+( λ
p− ε

q )

(1 + u)λ
du− (

λ

p
− ε

q
)−2(

B

A
)

λ
p− ε

q }.

By (7), we have (10). The lemma is proved. ¤

3. Main results and applications

Theorem 3.1. If an, bn ≥ 0, p > 1, 1
p + 1

q = 1, 0 < λ ≤ min{p, q}, such
that 0 <

∑∞
n=1 n(1−λ)(p−1)ap

n < ∞ and 0 <
∑∞

n=1 n(1−λ)(q−1)bq
n < ∞, then for
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A, B > 0, we have

∞∑
n=1

∞∑
m=1

ambn

(Am + Bn)λ
(11)

<
B(λ

p , λ
q )

Aλ/qBλ/p
{
∞∑

n=1

n(1−λ)(p−1)ap
n}

1
p {

∞∑
n=1

n(1−λ)(q−1)bq
n}

1
q ,

where the constant factor B(λ
p , λ

q )/(Aλ/qBλ/p) is the best possible. In particular,
for A = B = 1, we have

(12)
∞∑

n=1

∞∑
m=1

ambn

(m + n)λ
< B(

λ

p
,
λ

q
){

∞∑
n=1

n(1−λ)(p−1)ap
n}

1
p {

∞∑
n=1

n(1−λ)(q−1)bq
n}

1
q .

Proof. By Hölder’s inequality and in view of (6) and (9), we have

∞∑
n=1

∞∑
m=1

ambn

(Am + Bn)λ

=
∞∑

n=1

∞∑
m=1

[
am

(Am + Bn)λ/p
· (Am)(q−λ)/q2

(Bn)(p−λ)/p2 ][
bm

(Am + Bn)λ/q
· (Bn)(p−λ)/p2

(Am)(q−λ)/q2 ]

≤ {
∞∑

m=1

∞∑
n=1

ap
m

(Am + Bn)λ

(Am)(q−λ)p/q2

(Bn)(p−λ)/p
} 1

p {
∞∑

n=1

∞∑
m=1

bq
m

(Bn + Am)λ

(Bn)(p−λ)q/p2

(Am)(q−λ)/q
} 1

q

= {
∞∑

m=1

ωλ(A,B, p, m)m(1−λ)(p−1)ap
m}

1
p {

∞∑
n=1

ωλ(B, A, q, n)n(1−λ)(q−1)bq
n}

1
q .

Hence by (8) and (9), we have (11).
For 0 < ε < λ(q − 1), setting ãm and b̃n as

ãm = mλ−1−λ+ε
p , b̃n = nλ−1−λ+ε

q (m, n ∈ N),

then we have

J = {
∞∑

n=1

n(1−λ)(p−1)ãp
n}

1
p {

∞∑
n=1

n(1−λ)(q−1)b̃q
n}

1
q(13)

=
∞∑

n=1

1
n1+ε

= 1 +
∞∑

n=2

1
n1+ε

< 1 +
∫ ∞

1

1
t1+ε

dt = 1 +
1
ε
.

If there exists A,B > 0 and 0 < λ ≤ min{p, q}, such that the constant
factor B(λ

p , λ
q )/(Aλ/qBλ/p) in (11) is not the best possible, then there exists a
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positive number K < B(λ
p , λ

q )/(Aλ/qBλ/p), such that (11) is valid if we replace
B(λ

p , λ
q )/(Aλ/qBλ/p) by K. In particular, we have

εI = ε

∞∑
n=1

∞∑
m=1

ãmb̃n

(Am + Bn)λ
< εKJ.

Hence by (10) and (13), we find

A−
λ−ε

q B
ε
q−λ

p {B(
λ

p
− ε

q
,
λ + ε

q
)− ε(

λ

p
− ε

q
)−2(

B

A
)

λ
p− ε

q } < K(1 + ε).

Setting ε → 0+ in the above inequality, we conclude that B
(

λ
p , λ

q

)
/(Aλ/qBλ/p) ≤

K. This contradicts the fact that K < B(λ
p , λ

q )/(Aλ/qBλ/p). Thus the constant
factor B(λ

p , λ
q )/(Aλ/qBλ/p) in (11) is the best possible. The theorem is proved. ¤

Theorem 3.2. If a ≥ 0, p > 1, 1
p + 1

q = 1, 0 < λ ≤ min{p, q}, such that
0 <

∑∞
n=1 n(1−λ)(p−1)ap

n < ∞, then for A, B > 0, we have

(14)
∞∑

n=1

nλ−1

[ ∞∑
m=1

am

(Am + Bn)λ

]p

<
[B(λ

p , λ
q )]p

Aλ(p−1)Bλ

∞∑
n=1

n(1−λ)(p−1)ap
n,

where the constant factor [B(λ
p , λ

q )]p/(Aλ(p−1)Bλ) is the best possible; Inequality
(14) is equivalent to (11). In particular, for A = B = 1, we have

(15)
∞∑

n=1

nλ−1

[ ∞∑
m=1

am

(m + n)λ

]p

< [B(
λ

p
,
λ

q
)]p

∞∑
n=1

n(1−λ)(p−1)ap
n.

Proof. Since 0 <
∑∞

n=1 n(1−λ)(p−1)ap
n < ∞, then there exists k0 ∈ N, such

that for any k > k0, that makes 0 <
∑k

n=1 n(1−λ)(p−1)ap
n < ∞. We set

bn(k) = nλ−1
[∑k

m=1
am

(Am+Bn)λ

]p−1

, and use (11) to obtain

0 <

k∑
n=1

n(1−λ)(q−1)bq
n(k) =

k∑
n=1

nλ−1

[
k∑

m=1

am

(m + n)λ

]p

(16)

=
k∑

n=1

k∑
m=1

ambn(k)
(Am + Bn)λ

<
B(λ

p , λ
q )

Aλ/qBλ/p
{

k∑
n=1

n(1−λ)(p−1)ap
n}

1
p {

k∑
n=1

n(1−λ)(q−1)bq
n}

1
q .

Hence we find

(17) {
k∑

n=1

n(1−λ)(q−1)bq
n(k)} 1

p <
B(λ

p , λ
q )

Aλ/qBλ/p
{

k∑
n=1

n(1−λ)(p−1)ap
n}

1
p .
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It follows that 0 <
∑∞

n=1 n(1−λ)(q−1)bq
n(∞) < ∞. Hence, (16) keeps strict inequality

as k →∞ by (11); so dose (17) . Thus inequality (14) holds.
We prove that (11) implies (14). We need show that (14) implies (11). By

Hölde’s inequality, we have

∞∑
n=1

∞∑
m=1

ambn

(Am + Bn)λ
(18)

=
∞∑

n=1

[
n(λ−1)/p

∞∑
m=1

am

(Am + Bn)λ

] [
n(1−λ)/pbn

]

≤ {
∞∑

n=1

nλ−1

[ ∞∑
m=1

am

(Am + Bn)λ

]p

} 1
p {

∞∑
n=1

n(1−λ)(q−1)bq
n}

1
q .

Hence by (14), we have (11). It follows that inequality (14) is equivalent to (11).
If the constant factor in (14) is not the best possible, we may get a contradiction

that the constant factor in (11) is not the best possible by (18). The theorem is
proved. ¤

If λ = p ≤ q, we find that

B(p
p , p

q )

Ap/qBp/p
=

Γ(1)Γ(p− 1)
Γ(p)Ap−1B

=
1

(p− 1)Ap−1B
,

and in view of (11) and (14), we have

Corollary 3.3. If an, bn ≥ 0, 1 < p ≤ q, 1
p + 1

q = 1, such that 0 <∑∞
n=1 n−(p−1)2ap

n < ∞ and 0 <
∑∞

n=1 n−1bq
n < ∞, then for A,B > 0, we have

the following two equivalent inequalities:

(19)
∞∑

n=1

∞∑
m=1

ambn

(Am + Bn)p
<

1
(p− 1)Ap−1B

{
∞∑

n=1

n−(p−1)2ap
n}

1
p {

∞∑
n=1

n−1bq
n}

1
q ;

(20)
∞∑

n=1

nλ−1

[ ∞∑
m=1

am

(Am + Bn)p

]p

<

[
1

(p− 1)Ap−1B

]p ∞∑
n=1

n−(p−1)2ap
n,

where both of the constant factors in (19) and (20) are the best possible. In partic-
ular, for A = B = 1, we have

(21)
∞∑

n=1

∞∑
m=1

ambn

(m + n)p
<

1
(p− 1)

{
∞∑

n=1

n−(p−1)2ap
n}

1
p {

∞∑
n=1

n−1bq
n}

1
q ;

(22)
∞∑

n=1

nλ−1

[ ∞∑
m=1

am

(m + n)p

]p

<
1

(p− 1)p

∞∑
n=1

n−(p−1)2ap
n.
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Remark 3.4. (i). For λ = 1 and A,B > 0, both (4) and (11) reduce to

(23)
∞∑

n=1

∞∑
m=1

ambn

Am + Bn
<

π

A1/qB1/p sin(π
p )
{
∞∑

n=1

ap
n}

1
p {

∞∑
n=1

bq
n}

1
q ,

and for p = q = 2 and 0 < λ ≤ 2, both (4) and (11) reduce to

(24)
∞∑

n=1

∞∑
m=1

ambn

(Am + Bn)λ
<

B(λ
2 , λ

2 )
(AB)λ/2

{
∞∑

n=1

n1−λa2
n

∞∑
n=1

n1−λb2
n}

1
2 ,

which is just (3.17) in [5] and similar to (3.5) in [7] for C = A + B. Inequalities (4)
and (11) are two distinct extensions of (1) with distinct best constant factors; so
are (5) and (12).

(ii). Inequality (4) is a new extension of (2). Inequality (22) is only dependent
on p > 1, which is not an extension of (2).

(iii). Since all the extended inequalities are with the best constant factors, we
give some new results.
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