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ABSTRACT. The object of the present paper is to study a conformally flat quasi-Einstein
space and its hypersurface.

1. Introduction

In 2000, M. C. Chaki and R. K. Maity [1] introduced the notion of a quasi-
Einstein space. A non-flat Riemannian space M of dimension n (> 2) is said to be
a quasi-Einstein space if its Ricci tensor R;; of type (0, 2) is not identically zero and
satisfies the condition

(1.1) Rij = agij + bAi Ay,

where a, b are scalars with b # 0. The scalars a and b are called associated scalars.
Aj; is a unit covariant vector, called generator of the space. Such a space is usually
denoted by the symbol (QF),. In a recent paper [2], the first author and Gopal
Chandra Ghosh studied generalized quasi-Einstein spaces.

The conformal curvature tensor ([3], p.90) Cf”jk of type (1,3) of a Riemannian
space of dimension n is defined by

1
(1.2) Cihjlc = thjk — 7(?1 ~9) {(SZR” — 6?Rik + R,};fgij — R;Lgik}
R h h
+(n_1) (n_2) {6kglj 6]'97,]4;},

Received March 30, 2005.

2000 Mathematics Subject Classification: 53B25.

Key words and phrases: conformally flat quasi-Einstein spaces, semi-symmetric spaces,
recurrent spaces.

417



418 U. C. De, J. Sengupta and D. Saha

where R denotes the scalar curvature of the space. A Riemannian space of dimension
n (> 3) is said to be conformally flat if its conformal curvature tensor vanishes
identically. If n = 3, then the conformal curvature tensor vanishes identically. The
purpose of the present paper is to study a conformally flat quasi-Einstein space.
This paper is organized as follows:

In section 2, we first prove that a conformally flat quasi-Einstein space is a
space of quasi-constant curvature [4]. After that we find necessary and sufficient
conditions for a conformally flat quasi-Einstein space to be semi-symmetric [5].

Section 3 deals with necessary and sufficient conditions for a confomally flat
quasi-Einstein space to be recurrent [6] or locally symmetric.

Finally, in section 4 we study totally umbilical hypersurface ([7], p.43) of a con-
formally flat quasi-Einstein space.

2. Necessary and sufficient conditions for a conformally flat quasi-
Einstein space to be semi-symmetric

Since the space under consideration is conformally flat, from (1.2) it follows that

1
(2.1) R?jk = m=2 {6FRi; — 6;'1Rik + Rigij — R?gik}

R h h
ECEDICED) {0rgi; — 07 gir} -

Since the space is quasi-Einstein, its Ricci tensor R;; of type (0,2) can be
expressed in the form

(2.2) Rij = agij + bAA;

where a, b are scalars, b # 0 and A; is a unit covariant vector. Transecting with g%
from (2.2) we get

(2.3) R=an+b.
Using (2.2) and (2.3) in (2.1) we get
(2.4) thjk = D (51};92']' - 5?911@)
+q (51’;14114] — (;;ZAlAk -+ gijAhAk — gikAhAj) s
where 9\ _ b ;
p= =2 =b 4 =
(n—1)(n—2) n—2

are scalars. From (2.4) it follows that a conformally flat quasi-Einstein space is a
space of quasi-constant curvature [4].

A Riemannian space M of dimension n is said to be semi-symmetric [5] if its
curvature tensor thj & of type (1,3) satisfies the condition
(2.5) R} — Rl = 0

ijk,lm
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Contracting h and k we obtain from the above equation
(2.6) Rij 1m = Rij, mi-

If the space under consideration is a semi-symmetric quasi-Einstein space, then
it satisfies both the conditions (1.1) and (2.6) . From (1.1) we get

(2.7) Rij im = a,imGij + b, 1mAiAj + bA; 1mA; + bAA; im.

Therefore,

(2.8) Rijim — Rij mi = 0{(Ai,im — Ai,m1) Aj + Ai (A 1m — Ajmt) } -
Combining (2.6) and (2.8) we get

(2.9) (Aiim — Ai mi) A5 + Ai (A tm — Aj i) =0,
since b is non-zero. Using Ricci identity ([3], p. 30) we get from (2.9)
(2.10) (AnRl,,) Aj + Ai (AnR),) = 0.

Transecting with Afwe get

(2.11) AR

h
ilm

+ AjALATRY, = 0.

Since A; A, A7RY =0, we have AhRZm = 0 if and only if

jlm
(2.12) Aiymi = Aiim-
Hence we find that if a conformally flat quasi-Einstein space (QFE),, is semi-
symmetric, then the generator of the space satisfies the condition (2.12).

Conversely, let us assume that the generator of a conformally flat quasi-Einstein
space satisfies the condition (2.12). Now, from (1.2) we get,

(213) Rl i
= D,im (Op9ij — 07 gir) + @ im {OFAiA; — 61 A A + gi; A" A — gin AP A} }
+q {08 (Ai,imAj + Aidjim) = 8 (Ai,im Ar + AiAr,im) }
+q {9 (Af‘lmAk + A" Ag im) — gk (A,hzmAj +AMAjm) )
This gives,
(2.14) Rijt, im = Bijp, i =0

i.e., the space is semi-symmetric. Thus we can state the following:

Theorem 1. A conformally flat quasi-Einstein space (QE), (n > 3) is semi-
symmetric if and only if the generator A; of the space (QE), satisfies

Ai, lm — Ai, ml-
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This theorem also shows that a conformally flat quasi-Einstein space (QF),, is
not always a semi-symmetric space. Hence it is not always symmetric or recurrent
[6]. As sufficient conditions the following may be easily obtained.

Corollary. A conformally flat quasi-Einstein space (QFE), (n > 3) is semi-
symmetric if the generator A’ satisfies one of the following conditions:

(i) A? is a parallel vector field, i.e., Afj =0;

(ii) A* is concurrent, i.e., A'; = cd%, where c is a constant.
,

Now, the condition (2.12) is equivalent to

ARl =0.

ilm
Expressing this with respect to p and g we get from (1.2)
AR}y =0

(2.15) Le, (p+q)(Akgi; — Ajgir) = 0.
Transecting with g A* we get from (2.15)
(P+q(n—1)=0.
For n > 3 we have p + ¢ = 0. This gives
(a+b)(n—2)=0.

Therefore a+b = 0. Obviously, this condition is equivalent to (2.12). Hence we can
state:

Theorem 2. A conformally flat quasi-Finstein space (QE), (n > 3) is semi-
symmetric if and only if the sum of associated scalars is zero.

3. Necessary and sufficient condition for a conformally flat Quasi-
Einstein space to be Recurrent

Now we seek a necessary and sufficient condition for a conformally flat quasi-
Einstein space (QFE),, (n > 3) to be recurrent [6].

First we assume that the space under consideration is recurrent. Then the space
is semi-symmetric [5]. Since the space is semi-symmetric, using Theorem 2, we get
a+ b= 0. Hence the equation (1.1) can be written as

(31) Rij =a (gij — AiAj) .
On contraction this yields

(3.2) R=a(n-1).
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Since the space is recurrent, we can write
ho h
(3.3) Rijk, 1 = MRy,

where ); is a non-zero covariant vector. From (3.3) we get

and
(3.5) R, =\NR.

Combining (3.2) and (3.5) we get

(TL— l)a,l = )\lR

1
3.6 lLe, \j = — .
(3.6) ie, i =—a,

Now from (3.1), (3.4) and (3.6) it follows that

1
Rij1 = — a1

and hence we get
(3.7 Ai 1 Aj+ AiA; = 0.
since a = —b # 0. Transecting with A7 we get

A1 =0,

i.e., A; is parallel.
Conversely, if b = —a # 0 and A; is parallel, then we get,

a
R?jk = > {5;;92']' — 5;'19% - 5ZAiAj + 5;1A1Ak — gijAhAk + gikAhAj} .

From this it follows that

1
h h
3.8 R = a lR-z
( ) ijk, 1 n—2" ijk
_ h
= R,
where p; = ﬁa,l is a covariant vector, i.e., the space under consideration is

recurrent. In view of the above, we state:

Theorem 3. A conformally flat quasi-Einstein space (QE), is recurrent if and
only if the generator A; is parallel and the sum of the associated scalars is zero.
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Next, for a recurrent space the curvature tensor thj i satisfies

h _ h
Rijk,l = )‘lRijkv

where )\; is a covariant vector. Obviously, such a space is locally symmetric if and
only if \; =0, i.e., if and only if a ; = 0. Hence we get the following theorem.

Theorem 4. A conformally flat quasi-Einstein space (QF), of dimension n is
recurrent if and only if the generator of the space A; is parallel and the associated
scalar b = —a is a constant.

4. Totally umbilical hypersurface of a conformally flat quasi-Einstein
space

Let M™ be a conformally flat quasi-Einstein space of dimension n and M"™~!
is a space of dimension (n — 1) immersed in M™ by a differentiable immersion
i M™1 — M™. We identify i(M™~!) with M"™~! and call it is a hypersurface
([3], p- 8) of M™.

The Gauss equation ([3], p. 149) relates the curvature tensors of type (0,4) as

(4.1) Khijie = Ry B BY B} Bl + HijHpy, — Hix Hjn,
where H;; is the second fundamental tensor and

ox#

If on the hypersurface M™~! there exists two functions o and 8 and a unit
vector field vy such that

(4.3) H;; = agij + Boivj,

then M"~1 is said to be quasi-umbilical [4].

In particular, if 3 = 0, then M™! is said to be totally umbilical. Again if
a = 3=0, then M"! is said to be totally geodesic.

Here we assume that M™ is a conformally flat quasi-Einstein space and M"~!
is a totally umbilical hypersurface of M™. Since M™ is a conformally flat quasi-
Einstein space, from (2.4) if follows that the space is of quasi-constant curvature.

From (2.4), (4.1), (4.2) and (4.3) we get,

(4.4) Knijk = (p+a?) (9nk9ij — 9njgin)
+q (gneAiAj — ginAiAr + 9i; AnAr — gicAnd;) .

In particular, if the generator vector A; of M™ is orthogonal to M™~! then from
(4.4) we obtain

(4.5) Khijk = (p+ ) (ghgij — 9njgir) -
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Thus we have the following theorem:

Theorem 5. If the generator of a conformally flat quasi-FEinstein space is orthog-
onal to a totally umbilical hypersurface, then the space is of constant curvature.

Next we assume that a conformally flat quasi-Einstein space M of dimension n
with associated scalars a and b is semi-symmetric. Then by Theorem 2, we have

(4.6) a+b=0.

Similarly, a totally umbilical hypersurface M™~! of the conformally flat quasi-
Einstein space under consideration is semi-symmetric if and only if

(4.7) a+a?+b=0.

From (4.6) and (4.7) we get a = 0 and hence the hypersurface M™"~1! is totally
geodesic. Thus we get the theorem:

Theorem 6. Let a conformally flat quasi-FEinstein space is semi-symmetric. Then
a totally umbilical hypersurface of the space is semi-symmetric if and only if it is
totally geodesic.
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