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Abstract. The object of the present paper is to study a conformally flat quasi-Einstein

space and its hypersurface.

1. Introduction

In 2000, M. C. Chaki and R. K. Maity [1] introduced the notion of a quasi-
Einstein space. A non-flat Riemannian space M of dimension n (> 2) is said to be
a quasi-Einstein space if its Ricci tensor Rij of type (0, 2) is not identically zero and
satisfies the condition

(1.1) Rij = agij + bAiAj ,

where a, b are scalars with b 6= 0. The scalars a and b are called associated scalars.
Ai is a unit covariant vector, called generator of the space. Such a space is usually
denoted by the symbol (QE)n. In a recent paper [2], the first author and Gopal
Chandra Ghosh studied generalized quasi-Einstein spaces.

The conformal curvature tensor ([3], p.90) Ch
ijk of type (1, 3) of a Riemannian

space of dimension n is defined by

Ch
ijk = Rh

ijk −
1

(n− 2)
{
δh
kRij − δh

j Rik + Rh
kgij −Rh

j gik

}
(1.2)

+
R

(n− 1) (n− 2)
{
δh
kgij − δh

j gik

}
,
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where R denotes the scalar curvature of the space. A Riemannian space of dimension
n (> 3) is said to be conformally flat if its conformal curvature tensor vanishes
identically. If n = 3, then the conformal curvature tensor vanishes identically. The
purpose of the present paper is to study a conformally flat quasi-Einstein space.
This paper is organized as follows:

In section 2, we first prove that a conformally flat quasi-Einstein space is a
space of quasi-constant curvature [4]. After that we find necessary and sufficient
conditions for a conformally flat quasi-Einstein space to be semi-symmetric [5].

Section 3 deals with necessary and sufficient conditions for a confomally flat
quasi-Einstein space to be recurrent [6] or locally symmetric.

Finally, in section 4 we study totally umbilical hypersurface ([7], p.43) of a con-
formally flat quasi-Einstein space.

2. Necessary and sufficient conditions for a conformally flat quasi-
Einstein space to be semi-symmetric

Since the space under consideration is conformally flat, from (1.2) it follows that

Rh
ijk =

1
(n− 2)

{
δh
kRij − δh

j Rik + Rh
kgij −Rh

j gik

}
(2.1)

− R

(n− 1) (n− 2)
{
δh
kgij − δh

j gik

}
.

Since the space is quasi-Einstein, its Ricci tensor Rij of type (0, 2) can be
expressed in the form

(2.2) Rij = agij + bAiAj

where a, b are scalars, b 6= 0 and Ai is a unit covariant vector. Transecting with gij

from (2.2) we get

(2.3) R = an + b.

Using (2.2) and (2.3) in (2.1) we get

Rh
ijk = p

(
δh
kgij − δh

j gik

)
(2.4)

+q
(
δh
kAiAj − δh

j AiAk + gijA
hAk − gikAhAj

)
,

where

p =
a(n− 2)− b

(n− 1)(n− 2)
and q =

b

n− 2

are scalars. From (2.4) it follows that a conformally flat quasi-Einstein space is a
space of quasi-constant curvature [4].

A Riemannian space M of dimension n is said to be semi-symmetric [5] if its
curvature tensor Rh

ijk of type (1, 3) satisfies the condition

(2.5) Rh
ijk, lm −Rh

ijk, ml = 0.
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Contracting h and k we obtain from the above equation

(2.6) Rij, lm = Rij, ml.

If the space under consideration is a semi-symmetric quasi-Einstein space, then
it satisfies both the conditions (1.1) and (2.6) . From (1.1) we get

(2.7) Rij, lm = a, lmgij + b, lmAiAj + bAi, lmAj + bAiAj, lm.

Therefore,

(2.8) Rij, lm −Rij, ml = b {(Ai, lm −Ai, ml)Aj + Ai (Aj, lm −Aj ml)} .

Combining (2.6) and (2.8) we get

(2.9) (Ai, lm −Ai, ml) Aj + Ai (Aj, lm −Aj, ml) = 0,

since b is non-zero. Using Ricci identity ([3], p. 30) we get from (2.9)

(2.10)
(
AhRh

ilm

)
Aj + Ai

(
AhRh

jlm

)
= 0.

Transecting with Ajwe get

(2.11) AhRh
ilm + AiAhAjRh

jlm = 0.

Since AiAhAjRh
jlm = 0, we have AhRh

ilm = 0 if and only if

(2.12) Ai, ml = Ai, lm.

Hence we find that if a conformally flat quasi-Einstein space (QE)n is semi-
symmetric, then the generator of the space satisfies the condition (2.12).

Conversely, let us assume that the generator of a conformally flat quasi-Einstein
space satisfies the condition (2.12). Now, from (1.2) we get,

Rh
ijk, lm(2.13)

= p, lm

(
δh
kgij − δk

j gik

)
+ q, lm

{
δh
kAiAj − δh

j AiAk + gijA
hAk − gikAhAj

}

+q
{
δh
k (Ai, lmAj + AiAj, lm)− δh

j (Ai, lmAk + AiAk, lm)
}

+q
{
gij

(
Ah

, lmAk + AhAk, lm

)− gik

(
Ah

, lmAj + AhAj, lm

)}
.

This gives,

(2.14) Rh
ijk, lm −Rh

ijk, ml = 0

i.e., the space is semi-symmetric. Thus we can state the following:

Theorem 1. A conformally flat quasi-Einstein space (QE)n (n > 3) is semi-
symmetric if and only if the generator Ai of the space (QE)nsatisfies

Ai, lm = Ai, ml.
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This theorem also shows that a conformally flat quasi-Einstein space (QE)n is
not always a semi-symmetric space. Hence it is not always symmetric or recurrent
[6]. As sufficient conditions the following may be easily obtained.

Corollary. A conformally flat quasi-Einstein space (QE)n (n > 3) is semi-
symmetric if the generator Ai satisfies one of the following conditions:

(i) Ai is a parallel vector field, i.e., Ai
, j = 0;

(ii) Ai is concurrent, i.e., Ai
, j = cδi

j, where c is a constant.

Now, the condition (2.12) is equivalent to

AhRh
ilm = 0.

Expressing this with respect to p and q we get from (1.2)

AhRh
ijk = 0

(2.15) i.e., (p + q) (Akgij −Ajgik) = 0.

Transecting with gijAk we get from (2.15)

(p + q) (n− 1) = 0.

For n > 3 we have p + q = 0. This gives

(a + b) (n− 2) = 0.

Therefore a+ b = 0. Obviously, this condition is equivalent to (2.12). Hence we can
state:

Theorem 2. A conformally flat quasi-Einstein space (QE)n (n > 3) is semi-
symmetric if and only if the sum of associated scalars is zero.

3. Necessary and sufficient condition for a conformally flat Quasi-
Einstein space to be Recurrent

Now we seek a necessary and sufficient condition for a conformally flat quasi-
Einstein space (QE)n, (n > 3) to be recurrent [6].

First we assume that the space under consideration is recurrent. Then the space
is semi-symmetric [5]. Since the space is semi-symmetric, using Theorem 2, we get
a + b = 0. Hence the equation (1.1) can be written as

(3.1) Rij = a (gij −AiAj) .

On contraction this yields

(3.2) R = a (n− 1) .
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Since the space is recurrent, we can write

(3.3) Rh
ijk, l = λlR

h
ijk,

where λl is a non-zero covariant vector. From (3.3) we get

(3.4) Rij, l = λlRij

and

(3.5) R, l = λlR.

Combining (3.2) and (3.5) we get

(n− 1) a, l = λlR

(3.6) i.e., λl =
1
a

a, l.

Now from (3.1), (3.4) and (3.6) it follows that

Rij, l =
1
a
a, lRij

and hence we get

(3.7) Ai, lAj + AiAj, l = 0.

since a = −b 6= 0. Transecting with Aj we get

Ai, l = 0,

i.e., Ai is parallel.
Conversely, if b = −a 6= 0 and Ai is parallel, then we get,

Rh
ijk =

a

n− 2
{
δh
kgij − δh

j gik − δh
kAiAj + δh

j AiAk − gijA
hAk + gikAhAj

}
.

From this it follows that

Rh
ijk, l =

1
n− 2

a, lR
h
ijk(3.8)

= µlR
h
ijk,

where µl = 1
n−2a, l is a covariant vector, i.e., the space under consideration is

recurrent. In view of the above, we state:

Theorem 3. A conformally flat quasi-Einstein space (QE)n is recurrent if and
only if the generator Ai is parallel and the sum of the associated scalars is zero.
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Next, for a recurrent space the curvature tensor Rh
ijk satisfies

Rh
ijk, l = λlR

h
ijk,

where λl is a covariant vector. Obviously, such a space is locally symmetric if and
only if λl = 0, i.e., if and only if a, l = 0. Hence we get the following theorem.

Theorem 4. A conformally flat quasi-Einstein space (QE)n of dimension n is
recurrent if and only if the generator of the space Ai is parallel and the associated
scalar b = −a is a constant.

4. Totally umbilical hypersurface of a conformally flat quasi-Einstein
space

Let Mn be a conformally flat quasi-Einstein space of dimension n and Mn−1

is a space of dimension (n − 1) immersed in Mn by a differentiable immersion
i : Mn−1 −→ Mn. We identify i(Mn−1) with Mn−1 and call it is a hypersurface
([3], p. 8) of Mn.

The Gauss equation ([3], p. 149) relates the curvature tensors of type (0, 4) as

(4.1) Khijk = RµνληBµ
hBν

i Bλ
j Bη

k + HijHhk −HikHjh,

where Hij is the second fundamental tensor and

(4.2) Bµ
h =

∂xµ

∂xh
.

If on the hypersurface Mn−1 there exists two functions α and β and a unit
vector field vλ such that

(4.3) Hij = αgij + βvivj ,

then Mn−1 is said to be quasi-umbilical [4].
In particular, if β = 0, then Mn−1 is said to be totally umbilical. Again if

α = β = 0, then Mn−1 is said to be totally geodesic.
Here we assume that Mn is a conformally flat quasi-Einstein space and Mn−1

is a totally umbilical hypersurface of Mn. Since Mn is a conformally flat quasi-
Einstein space, from (2.4) if follows that the space is of quasi-constant curvature.

From (2.4), (4.1), (4.2) and (4.3) we get,

Khijk =
(
p + α2

)
(ghkgij − ghjgik)(4.4)

+q (ghkAiAj − gjhAiAk + gijAhAk − gikAhAj) .

In particular, if the generator vector Ai of Mn is orthogonal to Mn−1 then from
(4.4) we obtain

(4.5) Khijk =
(
p + α2

)
(ghkgij − ghjgik) .



Conformally Flat Quasi-Einstein Spaces 423

Thus we have the following theorem:

Theorem 5. If the generator of a conformally flat quasi-Einstein space is orthog-
onal to a totally umbilical hypersurface, then the space is of constant curvature.

Next we assume that a conformally flat quasi-Einstein space M of dimension n
with associated scalars a and b is semi-symmetric. Then by Theorem 2, we have

(4.6) a + b = 0.

Similarly, a totally umbilical hypersurface Mn−1 of the conformally flat quasi-
Einstein space under consideration is semi-symmetric if and only if

(4.7) a + α2 + b = 0.

From (4.6) and (4.7) we get α = 0 and hence the hypersurface Mn−1 is totally
geodesic. Thus we get the theorem:

Theorem 6. Let a conformally flat quasi-Einstein space is semi-symmetric. Then
a totally umbilical hypersurface of the space is semi-symmetric if and only if it is
totally geodesic.
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