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ABSTRACT. In the present paper we shall prove that on a foundation *-semigroup S with
an identity and with a locally bounded Borel measurable weight function w, the pointwise
convergence and the uniform convergence of a sequence of w-bounded exponentially convex
functions on S which are also continuous at the identity are equivalent.

1. Introduction

In [6] Okb El-Bab proved that if S is a foundation topological *-semigroup with
an identity e and with a Borel measurable weight function w such that 0 < w <1
and 1/w is locally bounded (i.e., bounded on compact subsets of S) and if P.(S,w)
is the set of w-bounded Borel measurable exponentially convex functions on S which
are continuous at e. Then a sequence (¢,) in P.(S,w), converges pointwise on S
to a function ¢ € P.(S,w) if and only if (¢,,) converges to ¢ uniformly on compact
subsets of S. He proved also that this result remains valid for any Borel measurable
weight function w such that w and 1/w are locally bounded.

2. Preliminaries

A topological semigroup S is called a #-semigroup if there is a continuous map-
ping * : S — S such that (z*)* = z and (zy)* = y*z* for all z,y € S. A locally
bounded (i.e bounded on compact subsets of S) mapping w : $ — RT (RT denote
the set of positive real numbers) is called a weight function on S if w(z*) = w(x)
and w(zy) < w(z)w(y) for all z,y € S. A function f : S — R is called w-bounded
if there is a positive number K such that |f(z)| < Kw(z)(z € S). A real valued
function ¢ on S is called exponentially convex if it satisfies

Z Z CiCj¢($i$j) Z 0

i=1 j=1

forall {zy, - ,2,} from S and {c1,- - , ¢, } from R. We denote by P,.(S,w)(P(S,w),
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respectively) the set of w-bounded, Borel measurable, continuous at e and exponen-
tially convex function on S (the set of w-bounded continuous exponentially convex
function on S, respectively). A x-representation of S by bounded operators on a
Hilbert space H is a homomorphism: z — m(z) of S into L(H), the space of all
bounded linear operators on H, such that w(x*) = (7(x))* for all x € S and 7(e) is
the identity operator on H. A representation 7 is called cyclic if there is a (cyclic)
vector £ € H such that the set {m(x){ : v € S} is dense in H, and 7 is called
w-bounded if there is a positive number K such that |7(z)| < Kw(z)(x € S). Note
that a s-representation 7 is w-bounded if and only if ||7(z)| < w(z)(z € S). For
further information see [2], [4], [5].

Recall that (see for example, [1]) L(S) or M,(S) denotes the set of all measures
w € M(S) (the convolution measure algebra of bounded complex measure on S with
the total variation norm || .||), for which the mapping x — J, * |u| and  — |u| * §,
(where 0, denotes the point mass at = for x € S) from S into M(S) are weakly
continuous. If w is a locally bounded Borel measurable weight function on .S, then
we denote by MF(S,w) the set of all complex regular measures p on S such that
wp € ME(S), where MF(S) denote the set of all measures in M, (S) with compact
support. We observe that MF(S,w) with convolution

(o 0)(f) = / fay)du(@)dvy) (f € Cu(9),

where C.(S) denote the space of all continuous complex valued function on S with
compact support.

A semigroup S is called foundation if U(supp(p) : p € M,(S)) is dense in
S. It is well known that M,(S) is a two sided closed L-ideal of M(S) and if
S is also foundation semigroup with identity, then both mapping x — J, * u and
x — uxdy(u € My(S)) from S into M, (S) are norm continuous (see [7]). We observe
that if S is a foundation semigroup with identity and with a locally bounded Borel
measurable weight function w, then both the mappings x — §, * p and x — p * 0,
(1 € MF(S,w)) from S into MF(S,w) are ||.||,, norm continuous, where |||, = [lwpl|
for every p € MF(S,w).
Now we introduce two new topologies 7, and 7; on P(S,w).

3. The 7-topology and the 7;-topology on P(S,w)

The following two definitions are needed for the proof of the main result.

Definition 3.1. For each compact subset F' of S, positive numbers «, 3, and
¢o € P(S,w) of a foundation *-semigroup S with an identity e and with a locally
bounded Borel measurable weight function w we define,

Z/{F;aﬂ(d)O) = {¢ € P(S7w) : |¢($) - ¢0($)| <«
and

(1) |p(2%) — ¢o(2?)| < B forall z € F}.
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The family of the sets of the form (1) define a base for a topology on P(S,w) which
is denoted by 7.

Definition 3.2. For ui, -+, i, € MF(S,w), positive real numbers a, 3,7, and
¢o € P(S,w) let

(2) Jm, - 7”%17‘1)517(¢0)
= {oers):| [ o) - wtldn )] <o | [ 06 - dl )] <

for j =1,-+,m and |é(e) - dole)| <7}
the family of the sets of the form (2) define a base for a topology 7; on P(S,w).

Lemma 3.1. Let S be a x-semigroup (not necessarily topological) with an identity
and with a weight w. Then every w-bounded exponentially conver function ¢ on S
satisfies the following inequality

3) [6(2) — d(zy)|* < ¢le)w?()[p(e) — 20(y) + ¢(y*)]  (z,y € 5).

Proof. Since ¢ is w-bounded, from [3] it follows that there exists a w-bounded cyclic
x-representation 7 of S by bounded operators on a Hilbert space H with a cyclic
vector €. Such that ||€]|?2 = ¢(e) and ¢(z) = (7(2)€,€) (z € S).

For every z,y € S, we have

|6(2) = dy2)]* = |(m(2)§,€) — (n(y2)€, )P
= |(r(@)&,& —m(y)e)I*
< m@)el*lie - m(y)el
= (r@)¢&m(@)E)lIE* - 20(y) + o(y?)]
= 0(2*)[g(e) - 20(y) + ¢(y°)]
< gl (@)e(e) — 20(y) + o(y*)]- B

Lemma 3.2. Let S be a foundation x-semigroup with identity and with a locally
bounded Borel measurable weight function w. Then P.(S,w) = P(S,w).

Proof. Let ¢ € P.(S,w). Take a fixed g € S and let W be a fixed compact
neighborhood of x(. Since w is locally bounded, there exists a positive real number
M such that w(z) < M for all x € W. Given ¢ > 0, by the continuity of ¢ at e
there exists a neighborhood U of e such that

[6(e) — 26(u) — p(u?)]* < (ue ).

Nl

2M{(6(e))2 +1]

Let
Wy = [U N Uz) N (zD)U W
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define a neighborhood of e. Let z € Wy, then uz = vz for some u,v € U, so by (3)

6(2) — p(x)] < |o(2) — dluz)| + |p(va) — ¢(z)|
< (ge)2w(2)([o(e) — 26(u) + p(u?)])?
+ (¢(e)) 2w(z)([d(e) — 26(v) + d(v?)])?
M(o(e %;1
= MO s v < °
so ¢ € P(S,w) and the proof is complete. O

The following theorem is the main result of this paper and it generalizes. The-
orem 1 of [6]. Note that P,(S,w) = P(S,w), by Lemma 3.2.

Theorem 3.1. Let S be a foundation x-semigroup with identity and with a lo-
cally bounded Borel measurable weight function w. Then the 1-topology and the
Tj-topology are identical on P(S,w).

Proof. Take ¢¢ fixed in P(S,w). Let J,, ... u.:8,v.2(¢0) be an arbitrary basic 7;-
neighborhood of ¢g. Choose a positive number 7 such that n < A\ and

20+ nmax{{lpal], -, [|pnll} < min(s,7).

Choose a compact set F such that e € Fy with

/ (w())2d]u;|(y) < 7, and / w(@)dlpl(y) <nG =1, ,m).
S\ Fo S\ Fo

Then it is clear that
uFomm((bO) C Jupee ,um;ﬂ,%/\wo)-
Conversely, suppose that Up q,.5,(¢0) is an arbitrary m,-neighborhood of ¢y.

Let 8 = min{ao, B} and M be a positive number such that w(z) < M for all
z € F. Put

| 5 2

Y= mm{81M4(1+¢o(e))’81M2(1+¢0(€))}
= min #

0 = min{g eyt

By the continuity of ¢ at e there exists a compact neighborhood U of e such that
forally e U

(4) [¢0(y) — ¢o(e)| < v and |go(y®) — go(e)| < 7.

Now choose a positive measure p € M¥(S,w) such that u(S) = 1 and e € supp(p) C
U.
By the |||, norm continuity of the mapping x — §, * u from S into M¥(S,w) and
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the compactness of F' we can find a finite subset {z1, -+ ,2,} of F such that the
set {0y * p: ¢ € F'} can be covered by {Ng,, -, N, }, where

No, ={N€ MF(S,w) i [[X\ =64, % pllw <6} fori=1,---,n

Again by the ||.||,-norm continuity of the mapping & — §,2u from S into M* (S, w),
we can find s1, 82, -, 8¢ € S such that the set {d,2 * u : z € F'} can be covered by
{N/,,---,N/,}, where

N, =€ Mi(S,w) [N =6z x pill <8} =1,--- ).

Put

zi=xpi=1,---, nznﬂfsjsj—s? for1 <j </

Put p=n+ ¢ and let uy = 65, * u(k =1,2,--- ,p). We shall prove that

T iz mp:6.5.6(00) NV Ty iy 4 (00) S Upip (o)
To prove this we choose ¢ € Jy,, ... ,,.655(¢0). Let x be fixed but arbitrary element

in F. We have [|0 * pt — 0g, * pill < 6 and [[0zsz — Oz, sa, * pill < & for some j and
g€ {1,2,--- ,p}. Therefore

(5) |00 () — 0 % pu( o)

| [166) — dnl)ds, = uto)

s|/¢ A2 5 1= b, 1))

+4/ — bo(y)]di; (v ru/% (5 % = 60 5 1)()]
< D)6 % p— Ba, % Hllu + 6+ S0(€) 152, * 8o * sl
< d(p(e) + gole) +1) < g

(In the above we have used [3]). Similarly by using the inequality |[d,2#p—0z25pulw <
4, we can prove that

(6) 2 1) — 8,2(00)| < 2.

Suppose now that
¢ € Jm%%v(%)'
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Then for every « € F by (3) and the Holder inequality we have
6,5 1(9) — 6(x)] < |/¢>wy duto) = [ ola)auty
[ 16ten) = 6(@)lduty
w(@) (@)} ( /U 6(e) — 26(y) + By dp(y))}

IN

IA

< M(e)}( /U [6(e) — 26(y) + By du(y))*

by (4) we obtain

/w»()—w() + o) duly)

2|/ ))duly |+|/ Y)|

2| lote) / 90(€) — do(y) du(y)
/|¢0 y)|dp(y) /|¢ y?)|du(y)
/U|¢0y ~ do(e)ldn(y) /\% Olduly) < 9

so for every x € F

IN

IN

(7) 16, % 1(9) — p(x)| < 3M(p(e)y)% <

Similarly for every x € F

(8) (602 % p(6) — 6(a?)] < w(z?)le)( /U 16(c) — 26(y) + Sy du(y))?

< M)t <2

Finally, for every ¢ € Jyu, ... 4,.6,5,6(¢0) N Ju .5~ (¢0) and every z € F from (5) and
(7).
We have

[p(x) — do(z)| < [@(x) — 2 x ()]
+ [0z * (@) — 0z * p(do)| + |62 * pu(o) — 6z * ()]
< 5y {j g g

3 +
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similarly for every « € F' from (6) and (8) we have

|6(2%) = ¢o(a?) < 6.
That is ¢ € Ur 3,5(¢0). The proof is now complete. Since Ur g3 C Ur.a0.8,- U

Theorem 3.2. Let S be a foundation topological x-semigroup with an identity and
with a locally bounded measurable w. Then a sequence {¢,} of w-bounded continu-
ous exponential convex function on S converges pointwise to a continuous function
¢ if and only if {¢n} converges to ¢ in the topology of uniform convergence on
compact subset of S.

Proof. Tt is known that the pointwise limit of a sequence of exponentially convex
function is an exponentially convex. Suppose that {¢,} converges to ¢ pointwise
on S and ¢ is also continuous. Then ¢ € P(S,w).

From the Lebesgue dominated convergence Theorem it follows that ¢,, — ¢ in the
Ty-topology. So by Theorem 3.1, ¢,, — ¢ in the 74-topology. The converse is obvi-
ous. (]
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