KYUNGPOOK Math. J. 46(2006), 337-343

The Uniform Convergence of a Sequence of Weighted Bounded Exponentially Convex Functions on Foundation Semigroups

HODA A. ALI Department of Mathematics, Faculty of Science, Al-Azhar University(girl), Nasr City, Cairo, Egypt e-mail: hodaabd@netscape.net

ABSTRACT. In the present paper we shall prove that on a foundation *-semigroup S with an identity and with a locally bounded Borel measurable weight function ω , the pointwise convergence and the uniform convergence of a sequence of ω -bounded exponentially convex functions on S which are also continuous at the identity are equivalent.

1. Introduction

In [6] Okb El-Bab proved that if S is a foundation topological *-semigroup with an identity e and with a Borel measurable weight function ω such that $0 < \omega \leq 1$ and $1/\omega$ is locally bounded (i.e., bounded on compact subsets of S) and if $P_e(S, \omega)$ is the set of ω -bounded Borel measurable exponentially convex functions on S which are continuous at e. Then a sequence (ϕ_n) in $P_e(S, \omega)$, converges pointwise on S to a function $\phi \in P_e(S, \omega)$ if and only if (ϕ_n) converges to ϕ uniformly on compact subsets of S. He proved also that this result remains valid for any Borel measurable weight function ω such that ω and $1/\omega$ are locally bounded.

2. Preliminaries

A topological semigroup S is called a *-semigroup if there is a continuous mapping $*: S \to S$ such that $(x^*)^* = x$ and $(xy)^* = y^*x^*$ for all $x, y \in S$. A locally bounded (i.e bounded on compact subsets of S) mapping $\omega : S \to \mathbb{R}^+$ (\mathbb{R}^+ denote the set of positive real numbers) is called a weight function on S if $\omega(x^*) = \omega(x)$ and $\omega(xy) \leq \omega(x)\omega(y)$ for all $x, y \in S$. A function $f: S \to \mathbb{R}$ is called ω -bounded if there is a positive number K such that $|f(x)| \leq K\omega(x)(x \in S)$. A real valued function ϕ on S is called exponentially convex if it satisfies

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \phi(x_i x_j) \ge 0$$

for all $\{x_1, \dots, x_n\}$ from S and $\{c_1, \dots, c_n\}$ from \mathbb{R} . We denote by $P_e(S, \omega)(P(S, \omega))$,

Received February 1, 2005.

2000 Mathematics Subject Classification: 43xx.

Key words and phrases: exponentially convex function, foundation semigroups.

Hoda A. Ali

respectively) the set of ω -bounded, Borel measurable, continuous at e and exponentially convex function on S (the set of ω -bounded continuous exponentially convex function on S, respectively). A *-representation of S by bounded operators on a Hilbert space H is a homomorphism: $x \to \pi(x)$ of S into L(H), the space of all bounded linear operators on H, such that $\pi(x^*) = (\pi(x))^*$ for all $x \in S$ and $\pi(e)$ is the identity operator on H. A representation π is called cyclic if there is a (cyclic) vector $\xi \in H$ such that the set $\{\pi(x)\xi : x \in S\}$ is dense in H, and π is called ω -bounded if there is a positive number K such that $\|\pi(x)\| \leq K\omega(x)(x \in S)$. Note that a *-representation π is ω -bounded if and only if $\|\pi(x)\| \leq \omega(x)(x \in S)$. For further information see [2], [4], [5].

Recall that (see for example, [1]) L(S) or $M_a(S)$ denotes the set of all measures $\mu \in M(S)$ (the convolution measure algebra of bounded complex measure on S with the total variation norm $\|\cdot\|$), for which the mapping $x \to \delta_x * |\mu|$ and $x \to |\mu| * \delta_x$ (where δ_x denotes the point mass at x for $x \in S$) from S into M(S) are weakly continuous. If ω is a locally bounded Borel measurable weight function on S, then we denote by $M_a^k(S, \omega)$ the set of all complex regular measures μ on S such that $\omega \mu \in M_a^k(S)$, where $M_a^k(S)$ denote the set of all measures in $M_a(S)$ with compact support. We observe that $M_a^k(S, \omega)$ with convolution

$$(\mu * \nu)(f) = \int f(xy)d\mu(x)d\nu(y) \quad (f \in C_c(S)),$$

where $C_c(S)$ denote the space of all continuous complex valued function on S with compact support.

A semigroup S is called foundation if $U(\operatorname{supp}(\mu) : \mu \in M_a(S))$ is dense in S. It is well known that $M_a(S)$ is a two sided closed L-ideal of M(S) and if S is also foundation semigroup with identity, then both mapping $x \to \delta_x * \mu$ and $x \to \mu * \delta_x (\mu \in M_a(S))$ from S into $M_a(S)$ are norm continuous (see [7]). We observe that if S is a foundation semigroup with identity and with a locally bounded Borel measurable weight function ω , then both the mappings $x \to \delta_x * \mu$ and $x \to \mu * \delta_x$ $(\mu \in M_a^k(S, \omega))$ from S into $M_a^k(S, \omega)$ are $\|.\|_{\omega}$ norm continuous, where $\|\mu\|_{\omega} = \|\omega\mu\|$ for every $\mu \in M_a^k(S, \omega)$.

Now we introduce two new topologies $\tau_{\mathcal{U}}$ and τ_J on $P(S, \omega)$.

3. The $\tau_{\mathcal{U}}$ -topology and the τ_J -topology on $P(S, \omega)$

The following two definitions are needed for the proof of the main result.

Definition 3.1. For each compact subset F of S, positive numbers α, β , and $\phi_0 \in P(S, \omega)$ of a foundation *-semigroup S with an identity e and with a locally bounded Borel measurable weight function ω we define,

$$\mathcal{U}_{F;\alpha,\beta}(\phi_0) = \{\phi \in P(S,\omega) : |\phi(x) - \phi_0(x)| < \alpha$$

and

(1)
$$|\phi(x^2) - \phi_0(x^2)| < \beta \quad \text{for all} \quad x \in F\}.$$

The family of the sets of the form (1) define a base for a topology on $P(S, \omega)$ which is denoted by $\tau_{\mathcal{U}}$.

Definition 3.2. For $\mu_1, \dots, \mu_m \in M_a^k(S, \omega)$, positive real numbers α, β, γ , and $\phi_0 \in P(S, \omega)$ let

(2)
$$J_{\mu_1, \cdots, \mu_m; \alpha, \beta, \gamma}(\phi_0)$$

= $\left\{ \phi \in P(S, \omega) : \left| \int_S [\phi(y) - \phi_0(y)] d\mu_j(y) \right| < \alpha, \left| \int_S [\phi(y^2) - \phi_0(y^2)] d\mu_j(y) \right| < \beta, for j = 1, \cdots, m \text{ and } |\phi(e) - \phi_0(e)| < \gamma \right\}$

the family of the sets of the form (2) define a base for a topology τ_J on $P(S, \omega)$.

Lemma 3.1. Let S be a *-semigroup (not necessarily topological) with an identity and with a weight ω . Then every ω -bounded exponentially convex function ϕ on S satisfies the following inequality

(3)
$$|\phi(x) - \phi(xy)|^2 \le \phi(e)\omega^2(x)[\phi(e) - 2\phi(y) + \phi(y^2)] \quad (x, y \in S).$$

Proof. Since ϕ is ω -bounded, from [3] it follows that there exists a ω -bounded cyclic *-representation π of S by bounded operators on a Hilbert space H with a cyclic vector ξ . Such that $\|\xi\|^2 = \phi(e)$ and $\phi(x) = (\pi(x)\xi, \xi)$ $(x \in S)$. For every $x, y \in S$, we have

$$\begin{aligned} |\phi(x) - \phi(yx)|^2 &= |(\pi(x)\xi,\xi) - (\pi(yx)\xi,\xi)|^2 \\ &= |(\pi(x)\xi,\xi - \pi(y)\xi)|^2 \\ &\leq ||\pi(x)\xi||^2 ||\xi - \pi(y)\xi||^2 \\ &= (\pi(x)\xi,\pi(x)\xi)[||\xi||^2 - 2\phi(y) + \phi(y^2)] \\ &= \phi(x^2)[\phi(e) - 2\phi(y) + \phi(y^2)] \\ &\leq \phi(e)\omega^2(x)[\phi(e) - 2\phi(y) + \phi(y^2)]. \end{aligned}$$

Lemma 3.2. Let S be a foundation *-semigroup with identity and with a locally bounded Borel measurable weight function ω . Then $P_e(S, \omega) = P(S, \omega)$.

Proof. Let $\phi \in P_e(S, \omega)$. Take a fixed $x_0 \in S$ and let W be a fixed compact neighborhood of x_0 . Since ω is locally bounded, there exists a positive real number M such that $\omega(x) \leq M$ for all $x \in W$. Given $\varepsilon > 0$, by the continuity of ϕ at e there exists a neighborhood U of e such that

$$[\phi(e) - 2\phi(u) - \phi(u^2)]^{\frac{1}{2}} < \frac{\varepsilon}{2M[(\phi(e))^{\frac{1}{2}} + 1]} \quad (u \in U).$$

Let

$$W_1 = [U^{-1}(Ux) \cap (xU)U^{-1}] \cap W$$

Hoda A. Ali

define a neighborhood of e. Let $z \in W_1$, then uz = vx for some $u, v \in U$, so by (3)

$$\begin{aligned} |\phi(z) - \phi(x)| &\leq |\phi(z) - \phi(ux)| + |\phi(vx) - \phi(x)| \\ &\leq (\phi(e))^{\frac{1}{2}} \omega(z) ([\phi(e) - 2\phi(u) + \phi(u^2)])^{\frac{1}{2}} \\ &+ (\phi(e))^{\frac{1}{2}} \omega(x) ([\phi(e) - 2\phi(v) + \phi(v^2)])^{\frac{1}{2}} \\ &\leq 2M(\phi(e))^{\frac{1}{2}} \frac{\varepsilon}{2M[(\phi(e))^{\frac{1}{2}} + 1]} < \varepsilon \end{aligned}$$

so $\phi \in P(S, \omega)$ and the proof is complete.

The following theorem is the main result of this paper and it generalizes. Theorem 1 of [6]. Note that $P_e(S, \omega) = P(S, \omega)$, by Lemma 3.2.

Theorem 3.1. Let S be a foundation *-semigroup with identity and with a locally bounded Borel measurable weight function ω . Then the $\tau_{\mathcal{U}}$ -topology and the τ_{J} -topology are identical on $P(S, \omega)$.

Proof. Take ϕ_0 fixed in $P(S, \omega)$. Let $J_{\mu_1, \dots, \mu_n; \beta, \gamma, \lambda}(\phi_0)$ be an arbitrary basic τ_J -neighborhood of ϕ_0 . Choose a positive number η such that $\eta \leq \lambda$ and

 $2\eta + \eta \max\{\|\mu_1\|, \cdots, \|\mu_n\|\} < \min(\beta, \gamma).$

Choose a compact set F_0 such that $e \in F_0$ with

$$\int_{S\setminus F_0} (\omega(y))^2 d|\mu_j|(y) < \eta, \text{ and } \int_{S\setminus F_0} \omega(y) d|\mu_j|(y) < \eta(j=1,\cdots,m).$$

Then it is clear that

$$\mathcal{U}_{F_0,\eta,\eta}(\phi_0) \subset J_{\mu_1,\cdots,\mu_m;\beta,\gamma,\lambda}(\phi_0).$$

Conversely, suppose that $\mathcal{U}_{F,\alpha_0,\beta_0}(\phi_0)$ is an arbitrary $\tau_{\mathcal{U}}$ -neighborhood of ϕ_0 . Let $\beta = \min\{\alpha_0, \beta_0\}$ and M be a positive number such that $\omega(x) \leq M$ for all $x \in F$. Put

$$\gamma = \min\{\frac{\beta^2}{81M^4(1+\phi_0(e))}, \frac{\beta^2}{81M^2(1+\phi_0(e))}\}\$$

$$\delta = \min\{\frac{\beta}{6\{\phi_0(e)+1\}}, 1\}.$$

By the continuity of ϕ_0 at e there exists a compact neighborhood U of e such that for all $y \in U$

(4)
$$|\phi_0(y) - \phi_0(e)| < \gamma \text{ and } |\phi_0(y^2) - \phi_0(e)| < \gamma.$$

Now choose a positive measure $\mu \in M_a^k(S, \omega)$ such that $\mu(S) = 1$ and $e \in supp(\mu) \subseteq U$.

By the $\|.\|_{\omega}$ norm continuity of the mapping $x \to \delta_x * \mu$ from S into $M_a^k(S, \omega)$ and

the compactness of F we can find a finite subset $\{x_1, \dots, x_n\}$ of F such that the set $\{\delta_x * \mu : x \in F\}$ can be covered by $\{N_{x_1}, \dots, N_{x_n}\}$, where

$$N_{x_i} = \{\lambda \in M_a^k(S, \omega) : \|\lambda - \delta_{x_i} * \mu\|_\omega < \delta\} \text{ for } i = 1, \cdots, n.$$

Again by the $\|.\|_{\omega}$ -norm continuity of the mapping $x \to \delta_{x^2} * \mu$ from S into $M_a^k(S, \omega)$, we can find $s_1, s_2, \cdots, s_{\ell} \in S$ such that the set $\{\delta_{x^2} * \mu : x \in F\}$ can be covered by $\{N'_{s_1}, \cdots, N'_{s_{\ell}}\}$, where

$$N'_{s_j} = \{\lambda \in M^k_a(S,\omega) : \|\lambda - \delta_{s_j^2} * \mu\|_\omega < \delta\} (j = 1, \cdots, \ell).$$

Put

$$z_i = x_i, i = 1, \cdots, n, z_{n+j} = s_j s_j^* = s_j^2 \text{ for } 1 \le j \le \ell.$$

Put $p = n + \ell$ and let $\mu_k = \delta_{x_k} * \mu(k = 1, 2, \dots, p)$. We shall prove that

$$J_{\mu_1,\mu_2,\cdots,m_{p;\delta,\delta,\delta}}(\phi_0) \cap J_{\mu,\gamma,\gamma,\gamma}(\phi_0) \subseteq \mathcal{U}_{F;\beta,\gamma}(\phi_0)$$

To prove this we choose $\phi \in J_{\mu_1, \dots, \mu_p, \delta, \delta, \delta}(\phi_0)$. Let x be fixed but arbitrary element in F. We have $\|\delta_x * \mu - \delta_{x_j} * \mu\|_{\omega} < \delta$ and $\|\delta_{x*x} - \delta_{x_q*x_q} * \mu\|_{\omega} < \delta$ for some j and $q \in \{1, 2, \dots, p\}$. Therefore

$$\begin{aligned} (5) & |\delta_{x} * \mu(\phi) - \delta_{x} * \mu(\phi_{0})| \\ &= |\int [\phi(y) - \phi_{0}(y)] d\delta_{x} * \mu(y)| \\ &\leq |\int \phi(y) d(\delta_{x} * \mu - \delta_{x_{j}} * \mu)(u)| \\ &+ |\int [\phi(y) - \phi_{0}(y)] d\mu_{j}(y)| + |\int \phi_{0}(y) d(\delta_{x_{j}} * \mu - \delta_{x} * \mu)(y)| \\ &\leq \phi(e) \|\delta_{x} * \mu - \delta_{x_{j}} * \mu\|_{\omega} + \delta + \phi_{0}(e) \|\delta_{x_{j}} * \delta_{x} * \mu\|_{\omega} \\ &< \delta(\phi(e) + \phi_{0}(e) + 1) < \frac{\beta}{3}. \end{aligned}$$

(In the above we have used [3]). Similarly by using the inequality $\|\delta_{x^2}*\mu - \delta_{x_q^2}*\mu\|_{\omega} < \delta$, we can prove that

(6)
$$|\delta_{x^2} * \mu(\phi) - \delta_{x^2}(\phi_0)| < \frac{\beta}{3}.$$

Suppose now that

$$\phi \in J_{\mu;\gamma,\gamma,\gamma}(\phi_0).$$

Hoda A. Ali

Then for every $x \in F$ by (3) and the Holder inequality we have

$$\begin{aligned} |\delta_x * \mu(\phi) - \phi(x)| &\leq |\int_S \phi(xy) d\mu(y) - \int_S \phi(x) d\mu(y)| \\ &\leq \int_S |\phi(xy) - \phi(x)| d\mu(y) \\ &\leq \omega(x)(\phi(e))^{\frac{1}{2}} (\int_U |\phi(e) - 2\phi(y) + \phi(y^2)] d\mu(y))^{\frac{1}{2}} \\ &\leq M \phi(e)^{\frac{1}{2}} (\int_U [\phi(e) - 2\phi(y) + \phi(y^2)] d\mu(y))^{\frac{1}{2}} \end{aligned}$$

by (4) we obtain

$$\begin{split} & \int_{S} [\phi(e) - 2\phi(y) + \phi(y^{2})] d\mu(y) \\ \leq & 2|\int_{U} [\phi(e) - \phi(y)] d\mu(y)| + |\int_{U} [\phi(y^{2}) - \phi(e)] d\mu(y)| \\ \leq & 2[\int_{U} [\phi(e) - \phi_{0}(e)] d\mu(y) + \int_{U} |\phi_{0}(e) - \phi_{0}(y)| d\mu(y) \\ & + \int_{U} |\phi_{0}(y) - \phi(y)| d\mu(y)] + \int_{U} |\phi(y^{2}) - \phi_{0}(y^{2})| d\mu(y) \\ & + \int_{U} |\phi_{0}(y^{2}) - \phi_{0}(e)| d\mu(y) + \int_{U} |\phi_{0}(e) - \phi(e)| d\mu(y) < 9\gamma \end{split}$$

so for every $x \in F$

(7)
$$|\delta_x * \mu(\phi) - \phi(x)| \le 3M(\phi(e)\gamma)^{\frac{1}{2}} < \frac{\beta}{3}.$$

Similarly for every $x \in F$

(8)
$$|\delta_{x^2} * \mu(\phi) - \phi(x^2)| \leq \omega(x^2)\phi(e)^{\frac{1}{2}} (\int_U |\phi(e) - 2\phi(y) + \phi(y^2)]d\mu(y))^{\frac{1}{2}}$$

< $3M^2(\phi(e)\gamma)^{\frac{1}{2}} < \frac{\beta}{3}.$

Finally, for every $\phi \in J_{\mu_1,\dots,\mu_p,\delta,\delta,\delta}(\phi_0) \cap J_{\mu,\gamma,\gamma,\gamma}(\phi_0)$ and every $x \in F$ from (5) and (7).

We have

$$\begin{aligned} |\phi(x) - \phi_0(x)| &\leq |\phi(x) - \delta_x * \mu(\phi)| \\ &+ |\delta_x * \mu(\phi) - \delta_x * \mu(\phi_0)| + |\delta_x * \mu(\phi_0) - \delta_x * \mu(\phi)| \\ &< \frac{\beta}{3} + \frac{\beta}{3} + \frac{\beta}{3} = \beta \end{aligned}$$

342

similarly for every $x \in F$ from (6) and (8) we have

$$|\phi(x^2) - \phi_0(x^2) < \beta.$$

That is $\phi \in \mathcal{U}_{F,\beta,\beta}(\phi_0)$. The proof is now complete. Since $\mathcal{U}_{F,\beta,\beta} \subset \mathcal{U}_{F;\alpha_0,\beta_0}$.

Theorem 3.2. Let S be a foundation topological *-semigroup with an identity and with a locally bounded measurable ω . Then a sequence $\{\phi_n\}$ of ω -bounded continuous exponential convex function on S converges pointwise to a continuous function ϕ if and only if $\{\phi_n\}$ converges to ϕ in the topology of uniform convergence on compact subset of S.

Proof. It is known that the pointwise limit of a sequence of exponentially convex function is an exponentially convex. Suppose that $\{\phi_n\}$ converges to ϕ pointwise on S and ϕ is also continuous. Then $\phi \in P(S, \omega)$.

From the Lebesgue dominated convergence Theorem it follows that $\phi_n \to \phi$ in the τ_J -topology. So by Theorem 3.1, $\phi_n \to \phi$ in the τ_U -topology. The converse is obvious.

References

- A. C. Baker and J. W. Baker, Algebra of measures on locally compact semigroups III, J. London Math. Soc., 4(1972), 685-695.
- [2] J. W. Baker, Measure algebras on semigroups, analytical and topological theory semigroups, Trends Developments (K. H. Hofmann et al, ed) de Gruyter, 1990, pp 221-252.
- [3] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups Springer-Verlag, 1984.
- M. Lashkarizadah Bami, Representation of foundation semigroups and their algebras, Can. J. Math., 37(1985), 29-47.
- [5] M. Lashkarizadah Bami, Bochner's theorem and the Housdorff moment theorem on foundation topological semigroups, Can. J. Math., 37(1985), 785-809.
- [6] A. S. Okb El-Bab, Convergence of exponmentially convex functions on foundation semigroups, Buletin of Fac. Sc., Al-Azhar Univ., 5(2)(1994), 29-35.
- [7] G. L. G. Sleijpen, Convolution measure algebras on semigroups, Ph.D. Theris Katholike Universiteit, the Netherlands, 1997.