References
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equat. Oper. Th., 13(1990), 307-315. https://doi.org/10.1007/BF01199886
- J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 135-140. https://doi.org/10.1090/S0002-9939-1973-0312313-6
- J. H. Anderson and C. Foias, Properties which normal operators share with normal derivations and related operators, Pacific J. Math., 61(1975), 313-325. https://doi.org/10.2140/pjm.1975.61.313
- M. Cho, Spectral properties of p-hyponormal operators for 0 < p < 1=2, Glasgow Math. J., 36(1992), 117-122.
- M. Cho and T. Huruya, p-hyponormal operators for 0 < p < 1=2, Comment. Math., 33(1993), 23-29.
- B. P. Duggal, On intertwining operators, Mh. Math., 106(1988), 139-148. https://doi.org/10.1007/BF01298834
- B. P. Duggal, On dominant operators, Arch. Math., 46(1986), 353-359. https://doi.org/10.1007/BF01200466
- C.R. Putnam, Hyponormal contractions and strong power convergences, Pac. J. Math., 57(1975), 105-110.
- J.G.Stampfli and B.L.Wadhwa, On dominant operators, Monatshefte. Fur. Math., 84(1977), 33-36.
- H. Tadashi, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125(1997), 221-230.
- A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integr. Equat. Oper. Th., 33(1997), 307-315.
- A. Uchiyama and T. Yoshino, On the class MATHCAL(Y ) operators, Nihonkai Math. J., 8(1997), 179-194.
- A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal operators, Glasg. Math. J., 3(2002), 397-416.
- D. Xia, On the nonnormal operators semi-hyponormal operators, Sci. Sinica, 23(1980), 700-713.