알긴산 코팅에 의한 골판지 상자 제조용 라이너 원지의 수분저항성 증진

Improvement of Water Resistant Properties of a Linerboard for Corrugated Fiberboard Box by Coating with Na-alginate

  • 김은정 (경희대학교 생명자원연구원 식품공학과) ;
  • 임종환 (목포대학교 식품공학과) ;
  • 김병용 (경희대학교 생명자원연구원 식품공학과)
  • Kim, Eun-Jung (Institute of Life Science and Resource, Department of Food Sci. & Biotech., Kyung Hee University) ;
  • Rhim, Jong-Whan (Department of Food Engineering, Mokpo National University) ;
  • Kim, Byung-Yong (Institute of Life Science and Resource, Department of Food Sci. & Biotech., Kyung Hee University)
  • 발행 : 2006.12.31

초록

골판지 상자의 수분저항성을 증진시키기 위해 골판지 상자 제조에 사용되는 라이너지의 표면을 알긴산으로 표면코팅을 하기 위한 최적 조건을 결정하기 위하여 농도, 가소제의 종류와 사용량, 알긴산의 불용화를 위한 다가 금속이온의 종류와 최적농도 및 침지시간 등을 결정하였다. 라이너지의 표면코팅을 위한 알긴산의 농도는 2.5%(w/w)가 적합하였으며, 가소제인 글리세롤은 알긴산 대비 35%의 농도로 사용하는 것이 적합하였고, 알긴산 필름의 불용화를 위해서는 2% $CaCl_2$ 용약을 사용하여 3분간 처리하는 것이 라이너지의 수분에 대한 저항성 증진에 최적조건을 결정되었다. 다가 금속이온으로 $CA^{2+}$ 이외에 $Cu^{2+}$를 사용했을 때 낮은 투습계수와 수분용해도를 나타냈다. 가소재의 종류에 따라서는 수분 흡습에 대한 저항성이 큰 솔비톨을 첨가 했을 때 라이너지의 수분저항성이 유의적인 차이를 보이며 증가하였다.

To improve water resistance of paperboard used to manufacture the corrugated boxes, effect of surface coating of the liner- board with Na-alginate was investigated by determining the optimum processing conditions such as a optimum alginate concentration for surface coating, plasticizer content, concentration of divalent cations their immersion times, For the surface coating of the liner-board, 2.5% Na-alginate solution was found to be the optimum concentration, and the concentration of glycerol used as plasticizer was effective when 35% alginate concentration was use was Used Immersion of the alginate coated paperboard for 3 min in a $CaCl_2$ solution improved the water resistance properties. As a divalent cation for the insolubilization of the alginate films, $Cu^{2+}$ was found to be as effective as $Ca^{2+}$. Among the platicizers tested, sorbitol was the most effective in reducing water vapor permeability and water solubility of alginate coated paperboard.

키워드

참고문헌

  1. Robertson GL. Food Packaging. Marcel Dekker, New York, NY, USA. pp. 649-650 (1992)
  2. Choi JO, Lee KS, Lee DS. Migration of potential volatile surrogate contaminants from paper packaging into food through gas phase. J. Korean Food Sci. Nutri. 33: 917-920 (2004) https://doi.org/10.3746/jkfn.2004.33.5.917
  3. Park MH, Lee DS, Lee KH. Food Packaging. Hyeongsoel Publishing, Daegu, Korea. pp. 18-22 (2002)
  4. Hanlon JF. Handbook of Package Engineering. McGraw-Hill Book Company, New York, NY, USA. pp. 42-52 (1972)
  5. Ahn BK, Ahn WY. Effect of coating of oxidized starch on properties of linerboard. Mokchae Konghak. 28: 71-79 (2000)
  6. Miltz J, Segal Y, Atad S. The effect of polymeric impregnation on the properties of paper and corrugated board. TAPPI 72: 63-66 (1989)
  7. Rhim JW, Lee JH, Hong Sl. Water resistance and mechanical properties of biopolymer (alginate and soy protein) coated paperboards. Lebensm. Wiss. Technol. 37: 806-813 (2006)
  8. Rhim JW, Lee JH, Hong SI. Increase in water resistance of paperboard by coating with poly(lactide). Packaging Sci. Technol. (submitted) (2006)
  9. Phillips GO, Williams PA. Gums and Stabilizers for the Food Industry (Vol 2). Pergamon Press. Oxford. UK. pp. 422-424 (1984)
  10. Whistler RL, BeMiller JN. Industrial Gums. (2nd ed) Academic Press. New York. NY, USA. pp. 422-424 (1973)
  11. Pavlath AE, Gossett C, Camirand W, Robertson GH. Ionomeric films of alginic acid. J. Food Sci. 64: 61-63 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb09861.x
  12. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Lebensm. Wiss. Technol. 37: 323-330 (2004) https://doi.org/10.1016/j.lwt.2003.09.008
  13. Parris N, Coffin DR, Joubran RF, Pessen H. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films. J. Agri. Food Chem. 43: 1432-1435 (1995) https://doi.org/10.1021/jf00054a004
  14. Lazarus CR, West RL, Oblinger JL, Palmer AZ. Evaluation of a calcium alginate coating and a protective plastic wrapping for the control of lamb carcass shrinkage. J. Food Sci. 41: 639-641 (1976) https://doi.org/10.1111/j.1365-2621.1976.tb00689.x
  15. Williams SK, Oblinger JL, West RL. Evaluation of a calcium alginate film for use on beef cuts. J. Food Sci. 43: 292-296 (1978) https://doi.org/10.1111/j.1365-2621.1978.tb02288.x
  16. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters 32: 195-198 (1973) https://doi.org/10.1016/0014-5793(73)80770-7
  17. King AH. Brown seaweed extracts (Alginates). Food Hydrocol. 2: 115-188 (1983)
  18. Imeson A. Thickening and Gelling Agents for Food. Blackie Academic and Professional, London, UK. pp. 1-21 (1997)
  19. Gennadios A, Weller CL, Gooding CH. Measurement errors in water permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21: 395-409 (1994) https://doi.org/10.1016/0260-8774(94)90062-0
  20. Rhim JW, Genadios A, Weller CL, Cezeirat C, Hanna MA. Soy protein isolate-dialdehyde starch films. Ind. Crops Prod. 8: 195-203 (1998) https://doi.org/10.1016/S0926-6690(98)00003-X
  21. SAS Institute, Inc. SAS User's Statistical Analysis Systems Institute. Cary, NC, USA (1988)
  22. Pavlath AE, Voisin A, Robertson GH. Pectin-based biodegradable water insoluble films. Macromol. Symp. 140: 107-113 (1999)