국내 암반분류 사례를 통한 싱글쉘 터널 지보량 산정 연구

Evaluation of Support Requirements for the Single Shell Tunnels from the Case Study of Rock Mass Classifications

  • 김학준 (대전대학교 지반설계정보공학과) ;
  • 이성호 (한국건설기술연구원 국토지반연구부) ;
  • 신휴성 (한국건설기술연구원 국토지반연구부) ;
  • 배규진 (한국건설기술연구원 국토지반연구부)
  • 발행 : 2006.09.01

초록

기존의 NATM 터널에서는 숏크리트가 임시적인 지보재로 사용되었으나 싱글쉘에서는 영구적인 구조물의 역할을 담당하게 된다. 따라서 숏크리트에 작용하는 하중과 변위를 신뢰성 있게 예측하는 것이 터널의 안정성을 확보하기 위한 필수조건이므로 지반정수 산정의 정확성이 매우 중요하다. 특히, 국내의 지질상태는 외국과 다르므로 싱글쉘 공법을 국내에 적용하기 위해서는 국내 지질상태를 고려한 지반정수 산정기법의 기술 개발이 필수적이다. 본 연구에서는 국내 25개 터널 현장에서의 암반분류 사례 및 지반정수 사례를 조사하였다. 국내 싱글쉘 터널공법을 위한 지보 패턴안을, Q분류에서 수정된 NMT방법과 국내 암반상태를 고려하여 제안하였다. 또한 사례연구를 통한 Q시스템과 RMR값의 상관성을 이용하여 RMR을 이용한 지보량을 제시하였다.

Shotcrete is used as a permanent lining in single shell tunnels even though shotcrete has been used as a temporary lining in NATM tunnels. Therefore, the accurate evaluation of strength parameters is very crucial because the reliable estimation of loads acting on the shotcretes is necessary to maintain the stability of tunnels. The evaluation of strength parameters of the ground far the single shell tunnels should be investigated to adapt the method in Korea because the geological condition of Korea is different from that of other country. Rock classification and strength parameters obtained from 25 tunnel sites were investigated for this study. Support types fur the different rock classes are suggested for the single shell tunnels in Korea based on the NMT because Q-system has been widely used in Korea. The support types in terms of both Q and RMR values are given based on the correlation of Q and RMR values obtained from the case studies.

키워드

참고문헌

  1. 신희순, 선우춘, 이두화, 2000, 토목기술자를 위한 지질 조사 및 암반분류, 구미서관, 491p
  2. 지오프론트, 2000, 숏크리트 복공에 의한 싱글쉘의 설계 에 관한 검토보고서, 일본 싱글쉘 분과회, 숏크리트 설계위원회
  3. Abad, J., Celada, B., Chacon, E., and Gutierrez, V & Hidalgo, E., 1983, Application of Geomechanical Classification to Predict the Convergence of Coal Mine Galleries and to Design Their Supports, Proc. 5th Int. Congr. Rock Mech., ISRM, Melbourne, Vol. 2, pp. E15-E19
  4. Barton, N., Grimstad, E., Aas, G., Opsahl, O. A., Bakken, A., Pedersen L., and Johansen, E. D., 1992, Norwegian Method of Tunnelling, WT Focus on Norwy, World Tunnelling
  5. Barton, N., Lien, R. and Lunde, J., 1974, Engineering Classification of Rock Masses for the Design of Tunnel Support, Rock Mech., Vol. 6, pp. 183-236
  6. Barton, N., Loset, f., Lien, R., and Lunde, J., 1980, Application of Q-system in Design Decisions, Subsurface Space, ed. M. Bergman, Pergamon, New York, pp. 553-561
  7. Bieniawski, Z. T., 1974, Estimating the Strength of Rock Materials, J. S. Afr. Inst. Min. Metall. Vol. 74, No. 8, pp. 312-320
  8. Bieniawski, Z. T., 1978, Determining Rock Mass Deformability -Experience from Case Histories, Int. J. Rock Mech. Min. Sci. 15, pp. 237-247 https://doi.org/10.1016/0148-9062(78)90956-7
  9. Cameron-Clarke, I. S. and Budavari, S., 1980, Correlation of Rock Mass Classification Parameters Obtained from Borehole and In Situ Observations, Eng. Geol., Vol. 17, pp. 16-53
  10. Cecil, O. S., 1970, Correlation of Rockbolts -Shotcrete Support and Rock Quality Parameters in Scandinavian Tunnels, Ph. D. Thesis, University of Illinois, Urbana, 414 p
  11. Deere, D. U., Peck, R. B., Parker, H., Monsees, J. E., and Schmidt, B., 1970, Design of Tunnel Support Systems, High. Res. Rec., no. 339, pp. 26-33
  12. Goel, R. K., Jethwa, J. L., and Paithankar, A. G., 1995. Indian experiences with Q and RMR systems, Tunnelling and underground space technology, Vol. 10, No. 1, pp. 97-109 https://doi.org/10.1016/0886-7798(94)00069-W
  13. Grimstad, E. and Barton, N., 1993, Updating of the QSystem for NMT, Proceedings of the International Symposium on Sprayed Concrete -Modern Use of Wet Mix Sprayed Concrete for Underground Support, Fagernes, pp. 46-66
  14. Kaiser, P. K., Mackay, C., and Gale, A. D., 1986, Evaluation of Rock Classifications at B. C. Rail Tumbles Ridge Tunnels, Rock Mech. Rock Eng. 19, pp. 205-234 https://doi.org/10.1007/BF01039996
  15. Merritt, A. H., 1972, Geological Prediction for Underground Excavations, Proc. Rapid Excav. Tunneling Conf., AIME, New York, pp. 115-132
  16. Moreno Tallon, E., 1982, Comparison and Application of the Geomechanics Classification Schemes in Tunnel Construction, Proc. Tunneling '82, Institute of Mining and Metallurgy, London, pp. 241-246
  17. Rutledge, J. C. and Preston, 1978, Experience with Engineering Classifications of Rock, Proc. International Tunnelling Symposium, Tokyo, pp. A 3.1-A 3.7
  18. Serafim, J. L. and Pereira, J. P., 1983, Considerations of the Geomechanics Classification of Bieniawski, Proc. Int. Symposium on Engineering Geology and Underground Construction, A. A. Balkema, Rotterdam, Vol. 1, pp. II. 33-II. 42
  19. Terzaghi, K., 1946, Rock Defects and Loads on Tunnel Supports; In: Rock Tunneling with Steel Supports by Proctor, R. V. and White, T. L., Commercial Shearing Co., Ohio, pp. 17-99
  20. Wickham, G. E., Tiedemann, H. R., and Skinner, E. H., 1972, Support Determination Based on Geologic Predictions, Proc. Rapid Excavation and Tunneling Conference, AIME, New York, pp. 43-64