단극-쌍극자 배열을 이용한 경사시추공-지표 탐사에서 전기비저항 토모그래피

Resistivity Tomography in an Inclined Borehole to Surface Purvey Using a Pole-dipole Array

  • 박종오 (대전대학교 지반설계정보공학과) ;
  • 김희준 (부경대학교 환경탐사공학과) ;
  • 박충화 (대전대학교 지반설계정보공학과)
  • Park Jong-Oh (Dept. of Geotechnical Design Engineering, Daejeon University) ;
  • Kim Hee-Joon (Dept. of Environmental Exploration Engineering, Pukyong National University) ;
  • Park Chung-Hwa (Dept. of Geotechnical Design Engineering, Daejeon University)
  • 발행 : 2006.09.01

초록

지표가 불규칙한 지형에서 경사시추공을 이용한 단극-쌍극자 배열 전기비저항 토모그래피 탐사를 보면, 우리는 시추공안에 있는 전류원과 지표의 지형기복 사이의 최단거리에 위치한 전위전극에서의 극성변화, 지형기복에 따른 거리계수와 포텐셜의 변화 및 모델링에서 경사 시추공에 위치한 전극과 절점의 공간적인 불일치 등을 고려할 수 있다. 요소분할 방법은 시추공이 곡선이거나 경사져 있을 경우와 하나의 요소에 여러 개의 전극이 있을 때 각 전극에 대한 절점 좌표를 지정할 수 있기 때문에 매우 효과적인 방법이라고 본다. 시추공과 지형기복이 동일한 경사를 갖는 경우에서의 역산 결과는 매우 좋은 영상으로 나타났으며 최소자승근의 오차가 안정적으로 수렴되는 경향을 보였다.

In an electrical tomographic survey using an inclined borehole with a pole-dipole array, we must consider several factors: a singular point associated with zero potential difference, a spatial discrepancy between electrode and nodal point in a model due to a inclined borehole, and a variation of geometric factors in connection with a irregular topography. Singular points which are represented by the normal distance from current source to the ground surface can be represented by serveral regions due to a irregular topography of ground surface. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Test on a three-dimensional (3-D) synthetic model produces good images of conductive target and shoves stable convergence.

키워드

참고문헌

  1. 박종오, 김희준, 송무영, 2004, 지형효과를 포함한 3차원 전기비저항 역산, 대한지질공학회지, 14, pp.21-28
  2. 박종오, 김희준, 박충화, 2006, 경사시추공을 이용한 전 기비저항 토모그래피, 2006년도 학술발표회 논문집, 대한지질공학회, pp.145-153
  3. deGroot-Hedlin, C. D. and Constable, C., 1990, Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, pp.1613-1624 https://doi.org/10.1190/1.1442813
  4. Fox, R. C., Hohmann, G. W., Killpack, T. J., and Rijo, L., 1980, Topographic effects in resisitivity and inducedpolarization surveys, Geophysics, 45, pp.75-93 https://doi.org/10.1190/1.1441041
  5. Jackson, P. D., Earl, S. J., and Reece, G. J., 2001, 3D resistivity inversion using 2D measurements of the electric field, Geophysical Prospecting, 49, pp.26-39 https://doi.org/10.1046/j.1365-2478.2001.00241.x
  6. Oldenburg, D. W., Li, Y., and Farquharson, C. G., Kowalczyk, P., Aravanis, T., King, A., Zhang, P., and Watts, A., 1998, Applications of geophysical inversions in mineral exploration, The Leading Edge, 17, pp.461-465 https://doi.org/10.1190/1.1437989
  7. Oppliger, G. L., 1984, Three-dimensional terrain corrections for mise-a-la-masse and magnetometric resistivity surveys, Geophysics, 49, pp.1718-1729 https://doi.org/10.1190/1.1441579
  8. Phillips, N., Oldenburg, D., Chen, J., Li, Y., and Routh, P., 2001, Cost effectiveness of geophysical inversions in mineral exploration: Applications at San Nicolas, The Leading Edges, pp.1351-1360
  9. Pridmore, D. F., Hohmann, G. W., Ward, S. H., and Sil, W. R., 1981, An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions, Geophysics, 46, pp.1009-1024 https://doi.org/10.1190/1.1441239
  10. Rijo, L. R., Pelton, W. H., Feitosa, E. C., and Ward, S., H., 1977, Interpretation of apparent resistivity data from Apodi Valley, Rio Grande Do Norte, Brazil, Geophysics, 42, pp.995-1005 https://doi.org/10.1190/1.1440778
  11. Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data, Geophysics, 54, pp.254-262 https://doi.org/10.1190/1.1442649
  12. Yang, J. S., 2002, Three-dimensional complex resistivity analysis for clay characterization in hydrogeologic study, Ph. D dissertation, Univ. of Calfornia, Berkeley
  13. Zhou, B., and Greenhalgh, S.A., 2001, Finite element three-dimensional direct current modeling: accuracy and efficiency considerations, Geophys. J. Int., 145, pp.679-688 https://doi.org/10.1046/j.0956-540x.2001.01412.x