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A Global Optimal Approach for Robot Kinematics Design
using the Grid Method

Joon-Young Park, Pyung-Hun Chang, and Jin-Oh Kim

Abstract: In a previous research, we presented the Grid Method and confirmed it as a systematic
and efficient problem formulation method for the task-oriented design of robot kinematics.
However, our previous research was limited in two ways. First, it gave only a local optimum due
to its use of a local optimization technique. Second, it used constant weights for a cost function
chosen by the manual weights tuning algorithm, thereby showing low efficiency in finding an
optimal solution. To overcome these two limitations, therefore, this paper presents a global
optimization technique and an adaptive weights tuning algorithm to solve a formulated problem
using the Grid Method. The efficiencies of the proposed algorithms have been confirmed through
the kinematic design examples of various robot manipulators.

Keywords: Adaptive weights tuning, global optimal kinematics, grid method, simulated

annealing.

1. INTRODUCTION

In a previous research, we presented the Grid
Method [1,2], a systematic, efficient problem
formulation method for the task-oriented design of
robot kinematics, and we confirmed its efficiency
through various design examples. In this paper, we
newly present a global optimization technique and an
adaptive weights tuning algorithm that can be used to
efficiently solve a formulated design problem using
the Grid Method.

Previous researches on the optimal problem
formulation of kinematic design [3-7] are problematic
in that the number of design variables increases in
proportion to d.o.f. and to the number of task points,
which then increases the complexities of cost
functions and constraints. In addition, these
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approaches become less efficient as d.o.f. and the
number of task points increase, considering that
search space generally increases exponentially as the
number of design variables increases [8]. To solve
such a problem, we proposed the Grid Method [1,2]
on the basis of the widely used method in Finite
Difference Method (FDM) or numerical analyses of
heat transfer and fluid flow. In the Grid Method, our
approach formulated an optimal design problem by
using a constant number of design variables regardless
of d.o.f. and the number of task points. In spite of its
efficient problem formulation, however, our previous
research was limited in two ways. First, it gave only a
local optimum due to its use of a local optimization
technique, Generalized Reduced Gradient Method
(GRG). Second, it used constant weights for a cost
function chosen by the manual weights tuning
algorithm, thereby making a selection of the weights
difficult and showing low efficiency in finding an
optimum. To overcome these limitations, therefore,
this paper presents a global optimization technique
and an adaptive weights tuning algorithm for
systematically and efficiently solving an optimal
design problem formulated by using the Grid Method.

The literature reviews on the global optimization
techniques used in previous approaches show that
they can be mainly classified as either Genetic
Algorithm (GA) [5-9] or Simulated Annealing [3,10].
Additionally, most previous approaches have used
constant weights for the cost function [3,6,11]. Kim
suggested a weights tuning algorithm that adaptively
determined the weights through four selection phases
[8]. However, the details of the weights tuning in each
phase were not automatically determined but still
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depended on manual tuning. Leger proposed the
Requirement Prioritization to adaptively determine the
weights in consideration of priority between the
constraint functions included in the cost function [9].
In accordance with Leger’s thesis, the constraint
function in our paper is called a metric. However, this
tuning scheme has no regard for dimensional
nonhomogeneity between the constraint functions or
for how far each constraint function deviates from its
optimum. Its determination of the weights was based
solely on whether or not a population of GA satisfied
each constraint function.

In this paper, we chose the Very Fast Simulated
Annealing (VFSA) [12,13], which has faster
convergence than the Simulated Annealing, as a
global optimization technique for solving a
formulated problem using the Grid Method.
Additionally, we used Recursive Evolution Technique
(RET) [14] so as to further improve the convergence
characteristics of VFSA. Through this application, we
show that a global optimization technique as well as a
local optimization technique can be applied to
formulated problems using the Grid Method.
Furthermore, in order to increase the efficiency of
finding an optimum, we propose an adaptive weights
tuning algorithm in consideration of dimensional
nonhomogeneity in the constraint functions and
deviation of each constraint function from its
optimum, and confirm its effectiveness through actual
applications.

The remainder of this paper is organized as follows.
In the following section, we briefly introduce the Grid
Method. Section 3 introduces VFSA and RET, which
are used for global optimization, and finally presents
the whole kinematic design algorithm obtained by
combining the techniques above with a problem
formulation using the Grid Method. In Section 4, we
propose a simple and efficient adaptive weights tuning
algorithm to increase the efficiency in finding a
solution to the optimal design problem formulated by
the Grid Method. Section 5 confirms the efficiencies
of the proposed algorithms through specific
applications. Finally, in Section 6, the results are
summarized and conclusions are drawn.

2. PROBLEM FORMULATION
USING GRID METHOD

In this section, we briefly introduce the Grid
Method and give a simple example to help readers
understand the Grid Method. Please refer to [1,2] for
detailed information on the Grid Method.

2.1. Basic assumptions

(i) All the design variables can vary continuously.

(ii) We use Paul’s notation [15] to represent DH
parameters for robot kinematics. In the case of

Joint i — 1

Common normal
Commonnormal ik ;

link i —1

Fig. 1. DH parameters with Paul’s notation.

Fig. 1, DH parameters between joint i and joint
i+1 can be represented by [, d;, a;, 6;. Here,
I; denotes link length; d; link offset; «; twist
angle; 6; joint angle.

(iii) As an object of our research, we deal with
general spatial manipulators that have link
lengths, link offsets, and twist angles as design
variables.

(iv) The d.o.f. of the robot is given.

(v) The robot base position is fixed and known.

(vi) No self-collision is considered.

(vii) The robot can be represented by a set of straight
line segments with a thickness of zero.

2.2. Problem formulation using the Grid Method

Let us consider the kinematic design of an n-d.o.f.
robot under m task points given as kinematic
requirements to be satisfied, as shown in Fig. 2(a). If
we consider every joint and task point as grid nodes,
the robots of Fig. 2(a) can be represented as a virtual
grid space consisting of the grids shown in Fig. 2(b).
The basic concept of the Grid Method regarding these
grid nodes is that, just like a heat transfer problem, the
base and task points are given as boundary conditions,
and then the joint positions and orientations within are
calculated through successive grid operations on the
unit grids shown in Fig. 2(b).

Now, we present an actual problem formulation
using the Grid Method. As stated above, the use of the
Grid Method simplifies the design problem of Fig.
2(a) into that of the unit grid shown in Fig. 2(b). Let
Fig. 3 represent the unit grid corresponding to the ith
joint and jth task point. The corresponding joint
position and twist angle are represented as
X ; =(x; ;.Y 5.7 ;) and oy ;(1<i<n+11< j<m),
respectively. Here, ¢, ; denotes the twist angle
between the axes of joint i—1 and joint i, and i = n+1
indicates the task point that the end-effector reaches.
Then the optimal design problem of robot kinematics
can be formulated as that of the unit grid as follows:

Find x; ;, a;_; ; of design variables to minimize a

cost function
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Fig. 2. Application of unit grids to »n-d.o.f. manipula-
tor for m task points. -
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Fig. 3. Unit grid.

f(Xi,ja ai—l,j)zf(xi,jayi,jnzi,j’ ai—l,j)’

1)
i:2’3,...’nl j:1’29.."m5
subject to the p equality constraints:
hy (xi,j’ ai—l,j) = hy (xi’j’yf,/’zi,j’ Qi-1,j ) =0, )
s=1to p,
and the ¢ inequality constraints:
& (Xi,j’ ai—l,j) =& (xi,j’yi,j’zi,j’ Xi,j ) <0, 3)

t=1togq.

Now we will describe the design variables, the cost
function, and the constraints needed for the actual
mathematical formulation of (1) to (3).

2.2.1 Design variables

The Grid Method takes the joint position x; ; and

twist angle « of the central node in the unit grid

i-l,j
as a set of design variables. Here, notice that the twist
angle was chosen as a design variable to represent
joint orientation based on the fact that in Paul’s
notation [15], the Z axis of the first joint is always
coincident with that of the world coordinate frame.
Therefore, the Z axis of every joint can be found,
provided we know every twist angle that represents
the angle between two neighboring Z axes.

2.2.2 Cost function

By using the weighting function method, we define
the cost function for the unit grid corresponding to the
ith joint of the jth task point as follows, and it should
be minimized for the sake of the optimal design.

Jue (xi, % ) =wgc * feci,j) + Wpoc * fpoc. )
+wre * frca, )+ Woe * foc, ) @)
+Wou * foai,jy + Wom * fomi, )

+Wiuc * Fiaca,j)

with ‘UG’ denoting the unit grid, and with w,
denoting a weight for each constraint function of
Jue (x,-, o0, j). In this section, we describe only

the meaning of each function; their mathematical
expressions are presented in Appendix A.

Equalization constraint (EC): EC makes the DH
parameters of the jth task point close to those of the
J—1th and j+1th task points in the unit grid. If ECs
become zero for all the unit grids, we have the
identical robot for all the task points.

Desired orientation constraint (DOC). Since the
desired orientation is determined by other joint
positions as well as the position of the end-effector,
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we need this constraint to achieve the desired
orientation.

Limit constraints (LC): LC is a constraint on the
possible ranges of DH parameters.

Dimension constraint (DC) [8]: DC requires that an
inner distance always be longer than an outer distance,
where distance L between two adjacent joints is
defined as L=(*+d*)".

Obstacle avoidance measure (OA): We consider
sphere-type obstacles basically because most oddly
shaped obstacles can be approximated by a
combination of several spheres. We determine their
cost function using the concept of the potential
function [16].

Dexterity measure (DM): Of various dexterity
measures for the kinematic design of a robot
manipulator, in this paper, we consider only Layout
Conditioning [17]. We will explain the selection of
DM in detail in Section 4.2.

Joint angle change constraint (JAC): JAC is used to
prevent a large, sudden change of joint angles
between two adjacent task points.

2.2.3 Constraints

In the case of a local optimization technique being
used for solving the formulated problem, we used an
inequality constraint to limit the search region to a
finite region where each link is less than the
maximum distance from the base to the task points.
Since VFSA is chosen as a global optimization
technique for our research, however, the role of the
inequality constraint above can be replaced by
‘stepsize adjustment’.

2.3. Simple example using the Grid Method

To help the reader gain a better understanding about
the Grid Method, we present the formulations on the
simple design example of a 3-d.o.f. planar
manipulator under 4 task points shown in Fig. 4(a)
using two different approaches - the widely used
general formulation method and the Grid Method.
Here, the general formulation method denotes the
design method that mathematically formulates the
optimum design problem using the general
mathematical model, often called the standard design
optimization model [18]. We used the EC only, the
most basic constraints to be a solution in order to
simplify the problem.

The general formulation method identifies all the
parameters required to describe the design of a system
as a set of design variables, thereby setting all joint
positions as design variables. The problem, therefore,
can be formulated as follows:

Find a vector of design variables

<= (xZ,l 2 V21 X2,3:)23
X31:Y3,1

T
X22-¥2.2 x2,4aJ’2,4j

X32:¥V32 X33,3V33  X34,)34

Task Task
Point 2 Point 3

Task
Task (x4 y42)\ (¥a3, ¥43) Point 4
Point 1
(44, Va4)

(x4,1, V1)

{(x32,332)

(X33, 313)

(x3‘4, }/3.4)

(3.1, ¥3.1) (r22, 322)] (r23 323)

(x24,32.4)

{(x2.1, ¥2.1)

/4
(L, Y= (2 1)
=(x13 Y= (x1,4,y1,4)

(a) 3-d.o.f. manipulator for 4 task points.

(x4,2 » Y42 ) (x4,3 > y4,3) (x4,4, y4,4)
0%

b, b P
Nl
C)—(xz,3v.3’3,3)_—<)
(xs,zayz,z) L (x3,4aJ’3,4)
b2 by b
O—O0—0
(x2,2,y2,2) (x2,3>y2,3) (x2,4>y2,4)

(b) Unit grid corresponding to the 3rd joint and 3rd
task point.

Fig. 4. Simple example using the Grid Method.

To minimize a cost function:
F0=(hy—h, )2 +(hp =15 )2 +(hs—ha )2
+(12,1 —by )2 +(hy—hs )2 +(hs ~b4)

+ (13,1 —13,; )2 + (13,2 —h3 )2 + (13,3 —ly )2 ,

2

where /; ; = \/ (i1 = X)7 + Vit = 1)’

subject to the inequality constraints:
0</} < Liyax> 0 b S Ligay, 0< b3 < Ly
0< 11’2 < Lpax» 05 12,2 < Lpax» 0< 13,2 < Lipax»
0<3<Lige, 01y 3 S Ly, 053 < Ly

0<h4 < Liaxs 0<hy 4 < Linas 0< 4 < L

where

2
Liax = max(\/(x4’j —Xx,; )2 + (y4,j _y],j) ).
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You can see that in this approach, the number of
design variables is ‘2(planar robot case) * (d.o.f-1) *
(no. of task points)’ = ‘2 * (3-1) * 4’ = 16, which
means that the number of design variables and
complexity of the problem increase with the number
of d.o.f. and task points. Therefore, this approach
becomes more inefficient as the number of d.o.f and
task points increases, considering that the search space
in general increases exponentially as the number of
design variables increases.

Now we apply the Grid Method to this design
problem. As stated in Section 2.2, considering every
joint and task point as grid nodes, we can divide the
design problem of Fig. 4(a) into those of the unit grids
like Fig. 4(b). Fig. 4(b) shows an example of the unit
grid that corresponds to the 3rd joint and 3rd task
point. The unit grid of Fig. 4(b) can be formulated as
follows:

Find a vector of design variables

x= (x3,3’y3,3 )
To minimize a cost function:
f®)=(hby—hs )2 +(hs—ha )2 +(, ~13)
+(bs—h g )2

subject to the inequality constraints:

2

0<ly3 <Ly, 03 <L

max * max *

Here, notice that the number of design variables
remains constant (i.e., ‘2(planar case)’) irrespective of
the number of d.o.f. and of task points. This implies
that the Grid Method becomes more efficient as the
number of d.o.f. and of task points both increase. Due
to this, the cost function f and the inequality
constraints can be represented very simply compared
with those of general formulation method.

The joint positions of all the nodes except the
central one of the unit grid in Fig. 4(b) are given as
boundary conditions. Through the application of an
optimization technique to the equations above, the

Grid Method determines a new joint position

(235", ¥33") of the central node, with the cost

function f optimized and with the given constraints
satisfied under such boundary conditions. We define
this Grid Method operation as Grid Operation. To
determine all the joint positions, one should perform
consecutive Grid Operations for all the unit grids in
the following order:

forj = 1 to 4(no. of task points)
for i =2 to 3(d.o.f))
Grid Operation(i, j)
end
end

3. VERY FAST SIMULATED ANNEALING
FOR GRID METHOD

In this paper, we chose VFSA, a widely used global
optimization technique [12,13], to find a global
optimal kinematics and, moreover, we used RET
(Recursive Evolution Technique) [14] to accelerate
the convergence characteristics of the Metropolis
algorithm in VFSA. In the following subsections, we
briefly introduce each of the techniques above, and
finally propose the whole design procedure obtained
by combining these techniques with a problem
formulation using the Grid Method.

3.1. Very fast simulated annealing and recursive
evolution technique

Simulated Annealing (SA), together with Genetic
Algorithm (GA), has been widely used as a global
optimization technique due to its effectiveness in
finding a global optimum from local optima and its
simple, compact algorithm. The idea for SA was based
on the statistical mechanics algorithm of Metropolis
[19-21]. Theoretical studies on the algorithm of SA
have shown that a global optimum of the optimization
problem can be reached with a probability one [22].
The main disadvantage of Classical SA, as is well
known, is its slow rate of convergence. There are, of
course, many algorithms to compensate for this, such
as Fast Simulated Annealing [23], Very Fast
Simulated Re-annealing [12,13], and so on. Of these,
we chose VFSA as a global optimization technique for
our research. Since the re-annealing part of Ingber’s
Very Fast Simulated Re-annealing is used to increase
its convergence characteristics and is not an
indispensable part for SA, we do not use it in this
paper.

The basic algorithm of VFSA can be summarized as
follows [13]:
(i: Initialization) Start with a high initial temperature
T and a random starting point x where x=

{xi;xi e[Al-, Bl-:l, izl...D}.
T« T, x<Xg )

(ii: Initial Evaluation) Find the function value of the
starting point.

E « f(x) (6)

(iii: Random Generation) Generate a new point x’
using the random variable y; €[-1, 1]. In other words,

yi’s are repeatedly generated until a valid set x' is
found.

xj < x;+y; (B - 4;), xle[Af’B"] @

The generating distribution of VFSA is defined as
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D 1

()= g2(|y,.| +T)1n(1+1/T)'

®)

To generate new points according to this
distribution, new values of y; are generated from the
uniform distribution u; eU[0, 1] as follows.

_ u 1 Pu=1|
¥; sgn(, 2)T[(1+1/T) 1] )

(iv: Function Evaluation) Calculate the function value
of x'.

E'« f(x") (10)

(v: Metropolis Criterion) Accept or reject the new
point x' using the Metropolis criterion.

If AE<0 where AE=FE'~E, accept the new
point.

If AE >0, accept the new point with the probability
density function defined as

p(x)

|
= 11
1+exp(AE/T) (1
(vi: Temperature Annealing) Reduce the temperature
T by the annealing schedule.

T « T(O)exp(—ck‘/D) (12)

(vii: Convergence Criterion) Return x and E as
the optimal point and the optimal function value,
respectively. If the convergence criterion is not
satisfied, go to (iii). Otherwise, stop executing the
algorithm.

In many cases, the above procedure for the SA
algorithm includes the step of ‘stepsize adjustment.’
As the number of iterations increases, the stepsize

adjustment algorithm gradually reduces [4; B;] of
(7), the region that should be searched for an optimum,
and is used to improve the convergence characteristics
of SA. There exist various forms of stepsize

adjustment [14,24], but we used the following
algorithm:

S/ <-a*S,, where O<a<l, S;=[4 B, |(13)

and gave the following as its initial values for an
optimal search starting from a sufficiently large
region:

S,- (O) =0.5% (L(i—],j)max + L(i,j)max)
for x; ; =(x; ;,¥i ;5% ;) (14)

Si(0)y=x/4 for a;, ;-

Jung and Cho proposed RET to accelerate the
convergence characteristics of the Metropolis
algorithm [14]. The basic concept behind RET is that

if ™" is not improved during a given number of
trials, the recursive evolution of solutions is actuated

from x™".

E fmin

. (15)
X XII'lll’l
That is to say, the basic idea of RET is that if the
minimum is not updated in spite of our efforts to find
an optimum smaller than the current minimum during
a given number of trials, a new search attempt starts
again from the minimum.

3.2. Whole design procedure by combining VFSA &
the Grid Method

In this subsection, we propose a whole design

procedure for the global optimization of robot

kinematics. This procedure is obtained by combining

the optimization techniques introduced in the previous

subsection with a problem formulation using the Grid

Method. The detailed explanation of the whole design

procedure is as follows:

(i) Initialization.

(ii) Grid Operation Loop: the detailed procedure for
Grid Operation Loop is presented in Fig. 5.

(iii) Is the number of step adjustments larger than

n ? Ifno, go to (V).

S __max

(iv) Adjust the step size. Reset the number of step
adjustments to 0.

(v) Is the number of temperature annealing larger
than #, ., ? Ifno, go to (vii).

(vi) Reduce temperature. Reset the number of
temperature annealing to 0.

(vii) Increase the number of step adjustments.
Increase the number of temperature annealing.

(viii)Set a current point as an optimum.

(ix) Recursive Evolution Technique.

(x) Is the convergence criterion satisfied? If no,
return to (ii). Otherwise, stop executing the

algorithm.

3.3. Some remarks on the actual application

In actual application, the global optimal solutions
of most kinematic design problems can not be solved
explicitly. This is the reason why we use the global
optimization techniques for such problems. By using
SA, for example, a global optimum of the
optimization problem can be theoretically reached
with a probability one {[22]. However, enormous
efforts (iterations) are usually required to reach a
global optimum on account of the random generation
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i ask point = 3 2. number of task point ‘
yes ;

Reset number of task point to 1 ] H

Fig. 5. Detailed algorithm for grid operation loop.

characteristics of the global optimization techniques.
For this reason, a convergence constant for a global
optimization technique is set to a sufficiently small
value (see Section 4.3), which is dependent upon a
designer’s decision, and when its cost function
reaches this constant, we usually accept it as a global
optimal solution. Using a global optimization
technique to obtain a global optimal solution, you can
find that it takes reasonable efforts for its cost
function to reach a somewhat small value close to the
convergence constant. In order to reach the
convergence constant beyond the small value,
however, tremendous efforts should be made due to its
random generation characteristics. Considering such
aspects, it is more reasonable to use a global
optimization technique for searching only a region
where a global optimal solution may exist, and to use
a local optimization technique in order to find a global
optimal solution within the region.

4. ADAPTIVE WEIGHTS TUNING
ALGORITHM FOR GRID METHOD

In order to actually obtain an optimal solution by
applying the Grid Method and the optimization
technique, we should determine the weights included

in each constraint function for the cost function of (4).
To this end, we had proposed a manual weights tuning
algorithm using the constant weights for the Grid
Method [2]. This manual weights tuning algorithm,
however, requires great time and effort in determining
especially, the weight for DM. In addition, it is
defective in that its constant weights cause
inefficiency in finding an optimum. To remedy these
problems, we newly propose the normalization of the
cost function and an adaptive weights tuning
algorithm. To begin with, we describe the
normalization of the cost function.

4.1. Normalization of cost function

As seen from Table 1, the constraint functions for
the cost function of (4) can be classified into the
following: functions of length (distance) variables,
functions of angle variables and functions of both
variables. Here, the angle variables in the unit of
radian vary within -7 <(6 or @)<z, while the

length variables in cm usually vary within a relatively
large magnitude of the order of 10°. Therefore,
considering that each constraint function of the cost
function has the function type of squaring these
variables, we can easily confirm that non-
homogeneity in the physical units of the variables
causes the large differences in magnitude of variation
between the functions of each variable. Such
imbalance makes it difficult for each constraint
function to participate equally in the optimization of
the cost function. To cope with this problem, we
normalize all the variables, thereby keeping them all
within a range of 0 to 1. In this way, we present a
normalization procedure for LC. The normalized
variables and functions for each constraint function
are given in Appendix A.

LC before normalization is as follows: to limit DH
parameter @ (=/,d,a or ) t0 Quin SO < Ppax, We
use the following constraint [2].

2
WLC*((”"("max) if ©> @

2.
wie * fre =3 wie *(@ = 0min )" if @ <@y (16)
0 otherwise

Table 1. Classification of each constraint function
included in cost function.

variables constraint functions

Terms related to /, d among EC;
DOC;, LConl, d, DC; OA

Terms related to «,§ among
EC;LCon «,8; JAC

length & angle | DM

length (distance)

angle
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Here, if we normalize the variable @ (@gi, <@

< @Pnax) as follows,

o' =P Pmin_ yhere 0<op” <1 (17)

Pmax ~ Pmin

then the constraint function in the case of ¢>

Prax (= (p* >1) in (16) can be transformed as
follows:

Yic ((/’—(l’max)z

@~ Pmin _((Omax _(/Jmin)jz (18)

Pmax ~ Pmin

=Wic ((gomax _(pmin) ¢
* * * 2

=Wie ((ﬂ —1) where W0 =Wy (Pmax ~ Pmin) -

Developing the case of ¢ <@, (= ga* <0) in the

same way, we can obtain the normalized function of
(16) as follows:

wic*(@ - if g >1
wie * fle =1 wie*(@ )’ if 9" <0 (19)
0 otherwise.

All the constraint functions, except DM, can be
normalized in the same manner.

As seen from Table 1, because DM has a
complicated function form that includes both kinds of
variables, it is difficult to normalize DM in the same
way as LC. Observing carefully the normalized
constraint functions, except DM, we can divide them
into the following two classes:

A kind of equality constraint function that in itself
varies between 0 and 1, and that has zero as its
optimum; EC and DOC belong to this class.

A kind of inequality constraint function that, when
its normalized variable varies between 0 and 1, has
zero as its optimum and that, when its normalized
variable deviates from the range of 0 to 1, limits the
search space by increasing its magnitude in proportion
to the square of the deviation; LC, DC, OA, and JAC
belong to this class.

Of these two classes, DM belongs to the former,
because DM is a measure with a specific value
representing the kinematic performance of a robot,
and is not the kind of inequality constraint that limits
the search space to a certain range. Therefore, for our
research, we intended to choose a normalized DM,
which has zero as its optimum and varies between 0
and 1, as in the former constraint functions. It is the

Layout Conditioning &, (J) [17] using the normalized

Jacobian J that totally satisfies such requirements

among various dexterity measures. However, because
x;(J) has one as its optimum and 1<x;(J) <,

we transform it into a minimization measure that has
zero as its optimum and that varies between 0 and 1 as
follows:

(isotropy)1 < x; (J) < oo (singularity)

= (singularity)0 < ]_ < 1(isotropy)
kr(J)

= (isotropy)0 <1- 1_ < 1(singularity)
xp(3)

L2 20
KL(J)j 20

" fom :[1—

4.2. Development of adaptive weights tuning algo-
rithm

Through the above normalization of the variables
included in the constraint functions, we were able to
transform their variation ranges into a range of 0 to 1.
However, even so, the actual variation ranges of the
normalized constraint functions can differ, unlike
those of normalized variables. As stated in the
previous section, the constraint functions belonging to
a kind of equality constraint function always vary
between 0 and 1, while those of an inequality
constraint function are proportional to the square of
the deviation of their normalized variables from a
range between 0 and 1. In addition, even if all the
constraint functions have a variation range between 0
and 1, there can still be a relatively considerable
difference, as much as between 0.00001 and 0.9,
between each constraint function. The manual weights
tuning algorithm in our previous research could not
help but have a limited effect on balancing such
differences between each term varying at every
iteration, because all the weights were initially
determined as fixed values according to initial
conditions in order to achieve a rough balance
between each term. Therefore, for equal participation
of each term in the optimization of the cost function,
we need an adaptive weights tuning algorithm to
adaptively maintain the balance between each term
according to current conditions at every iteration.

The basic idea for the adaptive weights tuning
algorithm that we propose in this paper is as follows:

All of the normalized constraint functions are
minimization measures that have zero as their
optimum. Therefore, if a constraint function is much
larger than others due to its insufficient minimization,
the adaptive weights tuning algorithm, in order to
keep the balance between each term, gives priority to
the minimization of this constraint function, thereby
making this constraint function similar in magnitude
to others. To this end, the weight corresponding to this
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Fig. 6. Conceptual description for adaptive weights
tuning algorithm.

constraint function should be determined as a
relatively larger value than other weights. Then the
optimization technique will minimize this constraint
function preferentially over other functions. To
conclude, we estimate each constraint function at
every iteration, choosing a priority group on the basis
of such estimates. Then, by determining the weights
for the priority group as relatively large values, we
can eventually achieve a balance between each term
of the cost function. Fig. 6 is a conceptual description
for the adaptive weights tuning algorithm we propose
in this paper. Here, the row of circles represents the
normalized constraint functions, with the exception of

DM. The colors of the circles represent their

magnitude; the deeper the color, the larger the

estimated magnitude. Notice that, for clarity, we
sorted the circles by the magnitude of the normalized
constraint functions.

Now, we will give a detailed explanation of each
step in the adaptive weights tuning algorithm:

(i) All the weights are initially set to 1.

(i) Grid Operations are consecutively executed on
all the unit grids by using the determined
weights.

(iii) In order to determine the weights for achieving
balance between the terms, we should first know
the current magnitude of each constraint
function. Notice here that the weights are
determined as identical values for all the unit
grids, not for only a single unit grid. For this
reason, the magnitude of each constraint
function should be obtained as the total sum of
cost functions of all the unit grids as follows:

1=/ w @n
joi

(iv) Unlike the case of the manual weights tuning
algorithm, DM in the adaptive weights tuning

algorithm is also a minimization measure that
has zero as its optimum and that varies between
0 and 1. However, DM is a measure that should
be minimized as far as possible, though not
necessarily to 0, while other constraint functions
must be minimized to 0. Moreover, in actual
applications, it is very difficult for DM, as well
as for all other constraint functions, to
simultaneously converge to 0. Usually the
obtained optimum has a DM that is significantly
larger than 0. Therefore, as in the manual
weights tuning algorithm, we should determine
the weight for DM to balance DM terms with
other terms, after determining the weights for all
constraint functions other than DM. This will
later be explained in detail. As stated above, the
weight for DM is determined differently than
that of other constraint functions. In this step,

therefore, we obtain only a maximum f:lax
among constraint functions, excepting ng.
This value will be used in f,:ax/ f(*) < Opres

of the step (v) to select a priority group, which is
a set of constraint functions that have priority
over other ones in terms of participation in the
optimization of the cost function.

(v) When selecting a priority group for optimization,
we exclude the constraint functions, which
already have sufficiently small values owing to
ample optimization, by using the inequality of

f:lax / f(*) < O, and then obtain a minimum

f:,in among the priority group. Here, the larger
the value of & 71,5, the more constraint functions
can be included in the priority group. In
accordance with our experience, & gy is set to
a value between 100 and 1000.
(vi) The priority group obtained from the steps above,
that is, the constraint functions that have values
should take
precedence over all other constraint functions in
the minimization of a total cost function. Our
basic weighting formula for this purpose is as

* *
between  f., and  fo..

follows:
Wiy = Jey 22)
(*) *
fmin

Let us describe in detail the formula above.
Using this weighting formula, we set the weight
of the minimum fr;in among the priority group
to 1. On the basis of this value, the weights of
more than 1 are assigned to the priority group,

and those of less than 1 are assigned to the
constraint functions excluded from the priority
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group. Moreover, as the magnitude of the
constraint function grows larger compared with

its criterion fr:in, this weighting formula

assigns a larger value to its corresponding
weight, thereby making the minimization of the
constraint function precede those of other
functions.

Furthermore, we additionally introduced the
concept of priority between each constraint
function into the basic weighting formula. That
is to say, to increase the effectiveness of the
weighting scheme according to the importance
of each constraint function, we modified the
weighting formula of (22) by introducing the
concept of priority as follows:

My
o[ S
Wy = —fi’ : (23)
min

Here, N(,)is a priority index given according to

the priority of each constraint function. As seen
from (23), a constraint function that has higher
priority therefore has a larger priority index than
other  functions, which  increases the
effectiveness of the weight for the constraint
function. However, even so, the criterion weight

of f,:ﬂn is still 1, and it is independent of the
priority index N(,y.

Table 2 shows the priority levels, the priority
indices N(,y, and their corresponding constraint

functions, as obtained from our experience.
However, the classification of each constraint
function by priority can differ according to the
characteristics of a given design problem.
Therefore, a designer should determine it so as
to be suitable for the characteristics of each
individual design problem.

(vii) Finally, we state the weighting scheme for DM,
As previously mentioned, unlike other constraint
functions, it is not easy for DM to reach the
optimal value of 0, and it usually has a relatively
large value compared with others. In considera-

Table 2. Priority level, priority index and correspond-
ing constraints.

Priority Level | N(e) Constraints
1 3 LC
2 2 EC for twist angle; DOC
3 1 EC for link length and
offset; DC;, JAC
L 4 0.5 04

tion of such characteristics, the weighting
method for the DM proposed in our research
determines the weight for DM at every iteration
in order to appropriately balance the magnitude
of DM term with those of other terms chosen as
the priority group for optimization. To this end,
through the following weighting formula, we
determined the weight for DM so that DM term
can be the average level of all other terms.

* * *
woar Jour = Kpwr D, except DM /m
m

. . N LY
“Wpar = Kpar D0 fe) except DM /(m * foum )

m

Here, Kp),is a constant for determining the
weight for DM on the basis of the average of all
other constraint functions. Also, K, should be
chosen as a value that optimizes DM the most
and that simultaneously causes all other
constraint functions to converge to zero.
K pyy 1s tuned from the starting value of ‘1° and,
in our experience, is usually set to a value
between 1 and 20.

(vii)) If all the weights are determined through the
above procedure, return to (ii) and repeatedly
execute the procedure above,

4.3. How to determine the convergence criterion

In order to judge whether an optimal solution has
been obtained or not, we have adopted a total cost
function, which is the total sum of cost functions of all
the unit grids, as follows:

Jiotal = ZZfUG (x;,;), where
joi

tue (Xi,j ) =Wge * fecq, ) + Wooc * fooca, )
+Wie * fred,y T Woe * o, (25)
+Wou * Joai,j) ¥ Woum * Som,j)

+Woe * fuca, )

Close inspection of f5(x; j-) reveals that every

constituent normalized constraint function is a
minimization measure having zero as its global
minimum. Hence, when f,, converges to a value
close to zero (usually less than 107, in our
experience), we can conclude that an optimal solution
has been obtained.

5. APPLICATIONS

In this section, we apply our proposed design
approach to a 2-d.o.f. planar manipulator design and a
PUMA-type spatial robot design.
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5.1. Design of a 2-d.o.f. planar manipulator

A 2-d.o.f. planar manipulator was designed, the tip
positions of which are given for seven task points as
follows: (-10,40), (5, 35), (10, 40), (12, 42), (17, 40),
(22, 35), (30, 30). The robot is to avoid two sphere-
type obstacles, which have a radius of 5 and a safety
factor of 3. Under such conditions, we applied the
local optimization technique of GRG and the global
optimization technique of VFSA, respectively.
Through these applications, we intend to verify if the
global optimization technique can always find the
global optimum regardless of initial postures, unlike
local optimization techniques that are sensitive to
initial postures. Kinematic requirements for this
design are as follows: EC, LC of 0</, <30 (i=1, 2),

DC, OA, DM, JAC of A6, .=60°(i=1,2). The

max,
global optimum of this design can be easily obtained
as l] = 12 =30.

The parameter values for the whole design
procedure in Section 3.2 are as follows:

For the whole design procedure in Section 3.2,

- number of stepsize adjustments : 50

- number of temperature annealing : 100

- number of trials for Recursive Evolution Techni-
que : 100

- reduction rate « of stepsize adjustments : 0.99.

For Grid Operation Loop in Fig. 5,

- number of cycles : 100

- number of trials for Recursive Evolution Techni-
que : 25.

For objective comparison, we applied the adaptive
weights tuning algorithm to both cases. The priority
level of each constraint function for the adaptive
weights tuning algorithm and its corresponding index
Ny are given in Table 2, and the constant Kp,,

for weight selection of DM was determined as 15.
In Fig. 7(a), we gave bad initial postures that were
far from the global optimum, while Fig. 7(b) shows

good initial postures that were relatively close to the
global optimum. Under such initial postures, Fig. 7(c)
and 7(d) show the design results obtained by using
GRG in each case, and Fig. 7(e) and 7f show those
obtained by using VFSA. The results show that GRG
finds only a local optimum in the case of bad initial
postures, although it can find an optimum very close
to the global optimum in the case of good initial
postures. As seen from Fig. 7(e) and 7(f), however, the
global optimization technique of VFSA always finds
an optimum very close to the global optimum
regardless of initial postures. The above results verify
that our proposed design approach can be applied to
actual design examples well and, moreover, that a
global optimization technique should be used in order
to get the global optimum regardless of initial
postures.

(¢) Result by GRG with
bad initial postures
:4=28.22, ,=15.91.

(d) Result by GRG with
good initial postures
:11,=29.99, ,=29.70.

(e) Result by VFSA with
bad initial postures
: 11=29.99, 1,=29.97.

(f) Result by VFSA with
good initial postures
: 1=29.99, 1,=29.98.

Fig 7. Design results for 2-d.o.f. planar manipulator.

5.2. Design of a 6-d.o.f. spatial manipulator with a
spherical wrist
A 6-d.o.f. spatial manipulator with a spherical wrist
was designed, the tip positions and orientations of
which are given for seven task points in Table 3. Here,
desired orientations are represented by Z-Y-X Euler
angles. The twist angles of the robot are given as
a =[-90°,0°,-90°,90°, —90°,0°]. The robot is to

Table 3. Positions and orientations of given task

points.
Task point Position Desired Orientation
1 (0, 30, 20) (0°, 0°,—135°)
2 (5, 35, 25) (0°, 0°,—135°)
3 (10, 40, 30) (0°, 0°, —135°)
4 (12, 42, 32) (0°, 0°,—-135°)
5 (17, 40, 30) (0°, 0°, —135°)
6 (22, 35,25) (0°, 0°, —135°)
7 (30, 30, 20) (0°, 0°,—135°)
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Base

(a) Initial postures.

Base

(c) Local optimal design by GRG using adaptive
weights tuning.

Base

(b) Local optimal design by GRG using manual tuning.

(d) Global optimal design by VFSA using adaptive
weights tuning.

Fig. 8. Results of optimal design for 6-d.o.f. spatial manipulator with spherical wrist.

avoid two sphere-type obstacles, which have a radius
of 3 and a safety factor of 2. Kinematic requirements
for this design are as follows: EC, DOC, LC of
0</,230,-30<d, <30 (i =1,2,---,6), DC, OA, DM,

JACof AB,.. . =60°(i=12,,6).

max, 7

5.2.1 Verification of the efficiency of the adaptive
weights tuning algorithm
In this subsection, we apply the manual weights
tuning algorithm, which was proposed in our previous
research, and the newly proposed adaptive weights
tuning algorithm to the problem above, respectively,
and through comparison of these results, confirm the
efficiency of the adaptive weights tuning algorithm.
For an objective comparison of the two tuning

algorithms, we chose GRG as an optimization
technique due to the random generation characteristic
of VFSA. In the case of the manual weights tuning
algorithm, we followed the procedure proposed in our
previous research [2], and determined the weight
wpy for DM as 0.02 through its best tuning. A

priority level of each constraint function for the
adaptive  weights tuning algorithm and its
corresponding index Ny are given in Table 2, and

the constant Kpy, for weight selection of DM is
determined as 15.

Fig. 8(b) and 8(c) are, respectively, the design
results obtained by applying the manual weights
tuning algorithm and the adaptive weights tuning
algorithm to the initial postures of Fig. 8(a). In the
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case of the manual weights tuning algorithm, it took
ten trials to choose the weight for DM through its best
tuning, and then 2763 iterations were required to get
an optimum using the chosen weight; in the case of
the adaptive weights tuning algorithm, only four trials
and 1531 iterations were necessary. In the manual
weights tuning algorithm the starting value is not
given, so its value should be gradually increased,
starting from a very small value, resulting in the
necessity for so many trials and iterations. The
adaptive weights tuning algorithm, on the other hand,
requires fewer trials than the manual weights tuning
algorithm in choosing the weight for DM because the
starting value for the weight tuning of DM is given as
1. Therefore, these results show that the adaptive
weights tuning algorithm is more efficient than the
manual weights tuning algorithm.

5.2.2 Design results for global optimal kinematics
In this subsection, we design the global optimal
kinematics of the 6-d.o.f. spatial manipulator with a
spherical wrist by using the whole design procedure in
Section 3.2 and the adaptive weights tuning algorithm,
and compare it with the design result obtained using
the local optimization technique of GRG in the
previous subsection.
The parameter values for the whole design
procedure in Section 3.2 are as follows:
For the whole design procedure in Section 3.2,
- number of stepsize adjustments : 50
- number of temperature annealing : 100
- number of trials for Recursive Evolution Techni-
que : 100
- reduction rate « of stepsize adjustments : 0.99.
For Grid Operation Loop in Fig. 5,
- number of cycles : 100
- number of trials for Recursive Evolution Techni-
que : 25.
The priority level of each constraint function for the
adaptive weights tuning algorithm and its correspond-
ing index N, are given in Table 2, and the constant

Kpu for weight selection of DM was determined as 15.

In Table 4, we have listed various performance
measures for the initial postures and the design results
by VFSA/GRG. Here, the result of Table 4(c) is a

numerical representation of Fig. 8(c) obtained by

using GRG and the adaptive weights tuning algorithm
in the previous subsection and, as stated before, is
given for comparison with the result using VFSA. All
the performance measures in Table 4 are given as
normalized values except EC; this is done for easy
decision of EC’s convergence, because the normalized
value of EC, even before the optimization procedure
is performed, may be too small to judge its
convergence. :

Fig. 8(a) and 8(d) is a graphical representation of

Table 4. Results optimal design for 6-d.o.f. spatial
manipulator with spherical wrist.

function I Tritials (b)V i}llieSA (c) GRG
JEC total 1414 0.007263 | 0.001981
fooC o | 08654 | 41e7 | 7.3e-8
fZCitota] 0 2.5e-8 0
foc | 6.8004 0 0
fon o | 74970014 | 1.3e-6 0
For ot | 66662 | 50500 | 52968
SH4C ol | 0.8996 0 0
fo 74970031 | 9.7e—6 9.0e—6

Tables 4(a) and 4(b), and shows initial postures and
their corresponding design result using the whole
design procedure in Section 3.2 and the adaptive
weights tuning algorithm. As seen from Table 4, initial
link lengths and offsets are not identical, because the
user arbitrarily gives initial joint positions:
JEC tota = 1414 % 0. Through the Grid Method,

however, we can get identical link lengths and offsets
for every task point; i.e., Jec tora =0-007263 ~ 0.

Careful observation of Fig. 8 leads us to find two
types of lines attached to each end-effector. Here, the
dotted lines represent the X and Z axes of the desired
orientation of each task point, the black circle in the
intersection of these lines represents the position of
each task point, and the solid lines represent the X and
Z axes of the actual coordinate frame of the end-
effector at each task point. From this figure, we can
see that in the design result each end-effector exactly
indicates the desired orientation, while in the initial
postures none of the end-effectors do. This fact can be

confirmed from the following: fpoc o = 0.8654
= 4.1e — 7. Moreover, we achieve obstacle avoidance

from the initial postures that collide with two
obstacles. In addition, this result is optimized from the

viewpoint of DM, as seen from ng_mm, =6.6662

= 5.0500, which is more optimized than the result
obtained using GRG of f;M total = 0.6062 = 5.2968,
and the total cost function“ is also minimized as

follows: fp. = 74970031=> 9.7e — 6. Fig. 9 shows

the transient variation of DH parameters in the case of
Fig. 8(d) as the iteration goes on. The left side of Fig.
9 denotes the transient variation of the average of each
DH parameter, and the right side denotes that of its
standard deviation. From this figure, you can see that
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Fig. 9. Transient variation of DH parameters in the
case of Fig. 8(d).

as the iteration goes on, the average of DH each
parameter converges on a value and its standard
deviation goes to zero, which means that VFSA and
the adaptive weights tuning algorithm proposed in this
paper work well with the Grid Method.

6. CONCLUSIONS

In this paper, we presented a simple, systematic,
effective design approach for robot optimal
kinematics, one that is composed of a problem
formulation using the Grid Method, VFSA as a global
optimization technique, and the adaptive weights
tuning algorithm for the Grid Method. Therefore, if

we input initial postures for every task point to the
computerized program for these algorithms, the
program automatically produces a global optimum of
robot kinematics. By virtue of this, even a novice
designer can easily design robot kinematics and,
furthermore, we expect that the necessary
development period for the robot will be shortened.

APPENDIX A: COST FUNCTION
AlLEC
EC before normalization [2] is as follows:

Tech,jy = Tra-1)) + i) + Wang * Jatia, j)» (26)

where

2 2
Triy =Uej = o) + Uy =l i)
(dk,j - dk,j—l )2 + (dk,j - dk,j+l )2
for revolute joint &
2 2
Wang ™ ((Hk,j —6;j1) 6 =6 ;1) )

for prismatic joint £,

+

2 2
Jagipy =@ = i) (@~ )

Here, wg,, denotes a weight for equalizing the
magnitude order of joint angles with that of link
lengths and offsets, fy(;_i j) is a cost function
concerning a lower link of the unit grid, fL(,-’ h is
concerning an upper link of the unit grid and
fa(i—l, 7 is concerning twist angles of the unit grid.
If © (Pmin <@ < @nax) isnormalized as follows,

(0* _ @ ~ Pmin

Pmax ~ Pmin

, where 0< (p* <l 27

(26) is normalized as follows.
* * * * *
Jeca,y = Jra-1.p) * Jr, ) T Wang ™ Jatia, > (28)
where

ey =y =T j2)" + Uy =l i)

(dlt,j - dZ,j_l)z + (dlt,j - dz,j+1)2

for revolute joint k
+

*

Wang *((gk,j _Hk,j—l) +(9k,j _ek,j+l) )
for prismatic joint £,

* * * 2 * * 2
Jatictjy =@ ;=i ;)" + (@i ;=i )"

A.2. DOC
DOC before normalization [2] is as follows:
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fooca.jy =|%a - iee||2 +|z4 —iee||2- (29)

Here, X; and Z; denote the unit vectors represent-
ing the X and Z axes of the desired orientation,

respectively, while X,., 7, denote those of the end-

effector’s coordinate frame. This constraint should be
used for Grid Operation in the unit grid related to the
robot’s d.o.f. for determining the desired orientation.

Here, 0< ||id - ieeH <2and0 Suid —2ee||2 <2, because
X;, Z4, X

.« and Z,, are all unit vectors. Hence, if

we determine the normalized variables as follows,

2 7 (30)
(0<dy <1, 0<dy <1).

(29) can be normalized thus:
fpoc(.j) =(dx)* +(dz). (1)
A3.LC

The normalized variables and functions for LC are
as follows:

@ - ifg">1
fL*c(i,j) =1 (p)? if p* <0,
0 otherwise, (32)
where (0* = M(O < (0* <.
Pmax ~ Pmin

A.4. DC 8]
The normalized variables and functions for DC are

as follows:
. (L ;=% if L >1
focap=1 " o
0 otherwise, (33)

L. . .
where sz =2t (0<L;
i-1,j

)

A.5.04
The normalized variables and functions for O4 are
as follows:

(d: =1)? if d, >1 & collision

f(;A(i, h ={ .
0 otherwise, (34)

where d. = % (0<d, <1).

c
c

Here, R s the radius of a sphere-type obstacle and d.
is the distance from the sphere center to a link.

A.6. DM
As stated in Section 4.1, we use the following
function as a normalized DM.

* _ —_—1— 2
fDM(i,j) —(1 X, (3)} , (35)

where & (j) denotes the Layout Conditioning [17].

A7.JAC

6. -6,1] < 86,
can be transformed into a form of LC. For example,
6, 6,1 < A6,

following:

1

0,; =0, /1| < Anay,; Of JAC

ax,i°

ax,; can be transformed into the

0, ;1 ~ DNa,s <65 <61 + A8,

max, i i,j —VYi, max,i*

(36)

As with LC, therefore, if we determine the normalized
variables as follows,

9* _ Hi,j _eCmin,(i,k)
ik —

PCmax,(i,k) ~ PCmin,(i,k) (37)
0<8,, <L k=j—lor j+1),

where  Ocmax i k) =Gk + Abmax,is Oominik) =ik

-AG,, then J4C can be normalized as follows:

ax,7°
Fraca,jy = Fiaci.j-n + Flaca, jys (38)
@ -1 if g, >1
where frican =1 (@) if 6 <0
0 otherwise.
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