Influence of Gluconeogenic Phosphoenolpyruvate Carboxykinase (PCK) Expression on Succinic Acid Fermentation in Escherichia coli Under High Bicarbonate Condition

  • Kwon Yeong-Deok (Department of Life Science, The Catholic University of Korea) ;
  • Lee Sang-Yup (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Kim Pil (Department of Biotechnology, The Catholic University of Korea)
  • Published : 2006.09.01

Abstract

The effects of amplifying the gluconeogenic phosphoenolpyruvate carboxykinase of Escherichia coli ($pck_{Ec}$) on succinic acid production in E. coli were examined under anaerobic condition. No significant increase in succinic acid production was observed in E. coli overexpressing the $pck_{Ec}$ gene without supplementing $NaHCO_{3}$ or $MgCO_{3}$. On the other hand, succinic acid production was enhanced as the $NaHCO_{3}$ concentration was increased. When 20 g/l of $NaHCO_{3}$ was added, succinic acid production in recombinant E. coli overexpressing PCK was 2.2-fold higher than that observed in the wild-type strain. It was concluded that the gluconeogenic $pck_{Ec}$ overexpression enabled E. coli to enhance succinic acid production only under the high bicarbonate supplementation condition.

Keywords

References

  1. Chatterjee, R., C. S. Millard, K. Champion, D. P. Clark, and M. I. Donnelly. 2001. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli Appl. Environ. Microbiol. 67: 148-154 https://doi.org/10.1128/AEM.67.1.148-154.2001
  2. Donnelly, M. I., C. S. Millard, D. P. Clark, M. J. Chen, and J. W. Rathke. 1998. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, andethanol. Appl. Biochem. Biotechnol. 70-72: 187-198 https://doi.org/10.1007/BF02920135
  3. Gokarn, R. R., M. A. Eiteman, and E. Altman. 2000. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. Appl. Environ. Microbiol. 66: 1844-1850 https://doi.org/10.1128/AEM.66.5.1844-1850.2000
  4. Goldie, H. 1984. Regulation of transcription of the Escherichia coli phosphoenolpyruvate carboxykinase locus: Studies with pck-lacZ operon fusions. J. Bacteriol. 159: 832-836
  5. Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49 Pt 1: 207-216 https://doi.org/10.1099/00207713-49-1-207
  6. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  7. Hong, S. H. and S. Y. Lee. 2001. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol. Bioeng. 74: 89-95 https://doi.org/10.1002/bit.1098
  8. Izui, K., M. Taguchi, M. Morikawa, and H. Katsuki. 1981. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. II. Kinetic studies with a reaction system containing physiological concentrations of ligands. J. Biochem. (Tokyo) 90: 1321-1331 https://doi.org/10.1093/oxfordjournals.jbchem.a133597
  9. Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power J. Microbiol. Biotechnol. 15: 281-286
  10. Kim, P., M. Laivenieks, C. Vieille, and J. G. Zeikus. 2004. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70: 1238-1241 https://doi.org/10.1128/AEM.70.2.1238-1241.2004
  11. Krebs, A. and W. A. Bridger. 1980. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. Can. J. Biochem. 58: 309-318 https://doi.org/10.1002/cjce.5450580305
  12. Lee, D. H., W. J. Jum, J. W. Yoon, H. Y. Cho, and B. S. Hong. 2004. Process strategies to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 14: 1310-1317
  13. McKinlay, J. B., J. G. Zeikus, and C. Vieille. 2005. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656 https://doi.org/10.1128/AEM.71.11.6651-6656.2005
  14. Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly. 1996. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62: 1808-1810
  15. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Lab, Press. New York
  16. Morikawa, M., K. Izui, M. Taguchi, and H. Katsuki. 1980. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. Estimation of the activities in the cells grown on various compounds. J. Biochem. (Tokyo) 87:441-449 https://doi.org/10.1093/oxfordjournals.jbchem.a132764
  17. Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlon, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  18. Sambrook, J. and D. W. Russell. 2000. Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Lab. Press, New York
  19. Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of CO(2)-HCO(3) levels and pH on growth, succinate production, and enzyme activities of Anaerobio-spirillum succiniciproducens. Appl. Environ. Microbiol. 57: 3013-3019
  20. Sanchez, A. M., G. N. Bennett, and K. Y. San. 2005. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog. 21: 358-365 https://doi.org/10.1021/bp049676e
  21. Shalel-Levanon, S., K. Y San, and G. N. Bennett. 2005. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol. Bioeng. 92: 147-159 https://doi.org/10.1002/bit.20583
  22. Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68: 1715-1727 https://doi.org/10.1128/AEM.68.4.1715-1727.2002
  23. Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552 https://doi.org/10.1007/s002530051431