Stabilization of Quinonoid Intermediate E-Q by Glu32 of D-Amino Acid Transaminase

  • Ro Hyeon-Su (Department of Microbiology and Research Institute of Life Science, Gyeongsang National University) ;
  • Jeon Che-Ok (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim Hak-Sung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Sung Moon-Hee (Department of Bio- and Nanochemistry, Kookmin University)
  • Published : 2006.09.01

Abstract

The stable anchorage of pyridoxal 5'-phosphate (PLP) in the active site of D-amino acid transaminase (D-AT) is crucial for the enzyme catalysis. The three-dimensional structure of D-AT revealed that Glu32 is one of the active site groups that may playa role in PLP binding. To prove the role of Glu32 in PLP stability, we firstly checked the rate of the potential rate-limiting step. The kinetic analysis showed that the rate of the ${\alpha}$-deprotonation step reduced to 26-folds in E32A mutant enzyme. Spectral analyses of the reaction of D-AT with D-serine revealed that the E32A mutant enzyme failed to stabilize the key enzyme-substrate intermediate, namely a quinonoid intermediate (E-Q). Finally, analysis of circular dichroism (CD) on the wild-type and E32A mutant enzymes showed that the optical activity of PLP in the enzyme active site was lost by the removal of the carboxylic group, proving that Glu32 is indeed involved in the cofactor anchorage. The results suggested that the electrostatic interaction network through the groups from PLP, Glu32, His47, and Arg50, which was observed from the three-dimensional structure of the enzyme, plays a crucial role in the stable anchorage of the cofactor to give necessary torsion to the plane of the cofactor-substrate complex.

Keywords

References

  1. Bae, H. S., S.-P. Hong, S.-G. Lee, M.-S. Kwak, N. Esaki, and M.-H. Sung. 2002. Application of a thermostable glutamate racemase from Bacillus sp. SK-1 for the production of d-phenylalanine in a multi-enzyme system. J. Mol. Catal. B-Enzym. 17: 223-233 https://doi.org/10.1016/S1381-1177(02)00011-5
  2. Burkhard, P., G. S. Rao, E. Hohenester, K. D. Schnackerz, P. F. Cook, and J. N. Jansonius. 1998. Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J. Mol. Biol. 283: 121-133 https://doi.org/10.1006/jmbi.1998.2037
  3. Futaki, S., H. Ueno, A. Martinez del Pozo, M. A. Pospischil, J. M. Manning, D. Ringe, B. Stoddard, K. Tanizawa, T Yoshimura, and K. Soda. 1990. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial d-amino acid transaminase. J. Biol. Chem. 265: 22306-22312
  4. Gallagher, D. T, G. L. Gilliland, G. Xiao, J. Zondlo, K. E. Fisher, D. Chinchilla, and E. Eisenstein. 1998. Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6: 465-475 https://doi.org/10.1016/S0969-2126(98)00048-3
  5. Hayashi, H. and H. Kagamiyama. 1995. Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: Involvement of Tyr70 in stabilization of the catalytic intermediate. Biochemistry 34: 9413-9423 https://doi.org/10.1021/bi00029a017
  6. Hyde, C. C., S. A. Ahmed, E. A. Padlan, E. W. Miles, and D. R. Davies. 1988. Three-dimensional structure of the tryptophan synthase ${\alpha}2{\beta}2$ multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263: 17857-17871
  7. Jensen, R. A. and W. Gu. 1996. Evolutionary recruitment of biochemically specialized subdivisions of family I within the protein superfamily of aminotransferases. J. Bacteriol. 178: 2161-2171 https://doi.org/10.1128/jb.178.8.2161-2171.1996
  8. Jung, B. R., Y. Lee, Y. Lim, and J. H. Ahn. 2005. Structure prediction of the peptide synthesized with the nonribosomal peptide synthetase gene from Bradyrhizobium japonicum. J. Microbiol. Biotechnol. 15: 656-659
  9. Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolates of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046
  10. Kim, J. H., J. J. Song, B. G. Kim, M. H. Sung, and S. C. Lee. 2004. Enhanced stability of tyrosine phenol-lyase from Symbiobacterium toebii by DNA shuffling. J. Microbiol. Biotechnol. 14: 153-157
  11. Lee, S. G. and M. H. Sung. 1999. Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia. Enz. Microb. Technol. 25: 298-302 https://doi.org/10.1016/S0141-0229(99)00071-X
  12. Lee, S. G., S. P. Hong, J. J. Song, S. J. Kim, M. S. Kwak, and M. H. Sung. 2006. Functional and structural characterization of thermostable D-amino acid aminotransferases from Geobacillus spp. Appl. Environ. Microbiol. 72: 1588-1594 https://doi.org/10.1128/AEM.72.2.1588-1594.2006
  13. Martinez del Pozo, A., M. A. Pospischill, H. Ueno, J. M. Manning, K. Tanizawa, K. Nishimura, K. Soda, D. Ringe, B. Stoddard, and G. A. Petsko. 1989. Effects of D-serine on bacterial D-amino acid aminotransferase: Accumulation of an intermediate and inactivation of the enzyme. Biochemistry 28: 8798-8803 https://doi.org/10.1021/bi00448a018
  14. Morino, Y. and S. Tanase. 1985. Quasisubstrates and irreversible inhibitors of aspartate aminotransferase, pp. 251-265. In Christen, P. and D. E. Metzler (eds.), Transaminases. John Wiley and Sons, New York, U.S.A
  15. Park, H., K. S. Lee, S. M. Park, K. W. Lee, A. Y. Kim, and Y. M. Chi. 2005. Relationship between enhancement of electrostriction and decrease of activation energy in porcine pancreatic lipase catalysis. J. Microbiol. Biotechnol. 15: 587-594
  16. Rhee, S., K. D. Parris, C. C. Hyde, S. A. Ahmed, E. W. Miles, and D. R. Davies. 1997. Crystal structures of a mutant (${\beta}$-K87T) tryptophan synthase ${\alpha}2{\beta}2$ complex with ligands bound to the active sites of the ${\alpha}$- and ${\beta}$-subunits reveal ligand-induced conformational changes. Biochemistry 36: 7664-7680 https://doi.org/10.1021/bi9700429
  17. Ro, H. S., S. P. Hong, T. Yoshimura, N. Esaki, K. Soda, H. S. Kim, and M. H. Sung. 1996. Site-directed mutagenesis of the amino acid residues in $\beta$-strand III of D-amino acid aminotransferase. FEBS Lett. 398: 141 -145 https://doi.org/10.1016/S0014-5793(96)01222-7
  18. Ro, H. S. and E. W. Miles. 1999. Structure and function of the tryptophan synthase ${\alpha}2{\beta}2$ complex: Roles of ${\beta}$ subunit histidine 86. J. Biol. Chem. 274: 36439-36445 https://doi.org/10.1074/jbc.274.51.36439
  19. Soper, T. S. and J. M. Manning. 1985. Enzyme-activated inhibitors of pyridoxal-phosphate enzymes, pp. 266-285. In Christen, P. and D. E. Metzler (eds.), Transaminases. John Wiley and Sons, New York, U.S.A
  20. Sugio, S., G. A. Petsko, J. M. Manning, K. Soda, and D. Ringe. 1995. Crystal structure of a D-amino acid aminotransferase: How the protein controls stereoselectivity. Biochemistry 34: 9661-9669 https://doi.org/10.1021/bi00030a002
  21. Toney, M. D., E. Hohenester, J. W. Keller, and J. N. Jansonius. 1995. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. J. Mol. Biol. 245: 151-179 https://doi.org/10.1006/jmbi.1994.0014
  22. Yonaha, K., H. Misono, T. Yamamoto, and K. Soda. 1975. D-Amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties. J. Biol. Chem. 250: 6983-6989