Construction of asm2 Deletion Mutant of Actinosynnema pretiosum and Medium Optimization for Ansamitocin P-3 Production Using Statistical Approach

  • Bandi Srinivasulu (Institute for Marine Biosciences, NRC) ;
  • Kim Yoon-Jung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chang Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Shang Guang-Dong (Department of Chemistry, University of Washington) ;
  • Yu Tin-Wein (Department of Chemistry, University of Washington) ;
  • Floss Heinz G. (Department of Chemistry, University of Washington)
  • Published : 2006.09.01

Abstract

Ansamitocin P-3 is a potent antitumor agent produced by A. pretiosum. A deletion mutant of A. pretiosum was constructed by deleting the asm2 gene, a putative transcriptional repressor. The deletion mutant showed a 9-fold enhanced ansamitocin P-3 productivity. The response surface method with central composite design was employed to further optimize the culture medium composition for ansamitocin P-3 production by the deletion mutant. The concentrations of four medium ingredients, dextrin, maltose, cotton seed flour, and yeast extract, which have been reported as major components for ansamitocin production, were optimized through a series of flask culture experiments. The optimum concentrations of the selected factors were found to be dextrin 6.0%; maltose 3.0%; cotton seed flour 0.53%; and yeast extract 0.45%. The maximum titer of ansamitocin P-3 was 78.3 mg/l with the optimized composition, about 15-folds higher than the unoptimized titer of 5.0 mg/l obtained with YMG medium.

Keywords

References

  1. Abdel-Fattah, Y. R. and Z. A. Olama. 2002. L-Asparaginase production by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Process. Biochem. 38: 115-122 https://doi.org/10.1016/S0032-9592(02)00067-5
  2. Aknazarov, S. 1982. In Kafarov, V. (ed.). Experiment Optimization in Chemistry and Chemical Engineering. Mir Publications, Moscow
  3. Asai, M., E. Mizuta, M. Izawa, K. Haibara, and T. Kishi. 1979. Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 35: 1079-1085 https://doi.org/10.1016/S0040-4020(01)93726-3
  4. Bailey, J. E., A. Sburlati, V. Hatzimanikatis, K. Lee, W. A. Renner, and P. S. Tsai. 1996. Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 52: 109-121 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<109::AID-BIT11>3.0.CO;2-J
  5. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  6. Bloor, S. and R. R England. 1981. Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. Enz. Microb. Technol. 13:76-81
  7. Bandi, S., Y. J. Kim, S. O. Sa, and Y.-K. Chang. 2005. Statistical approach to development of culture medium for ansamitocin P-3 production with Actinosynnema pretiosum ATCC 31565. J. Microbiol. Biotechnol. 15: 930-937
  8. Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment ofoptimum conditions. J. Roy. Stat. Soc. B13: 1-45
  9. Box, G. E. P. 1978. In Hunter, W. G. and Hunter, J. S. (eds.). Statistics for Experiments, pp. 291-334. John Wiley and Sons, New York
  10. Carroll, B. J., S. J. Moss, L. Bai, Y. Kato, S. Toelzer, T. W. Yu, and H. G. Floss. 2002. Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual 'glycolate' chain extension unit in ansamitocin biosynthesis. J. Am. Chem. Soc. 124: 4176-4177 https://doi.org/10.1021/ja0124764
  11. Cassady, J. M., K. K. Chan, H. G. Floss, and E. Leistner. 2004. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. 52: 1-26 https://doi.org/10.1248/cpb.52.1
  12. Chang, Y. N., J. C. Huang, C.-C. Lee, I. L. Shih, and Y. M. Tzeng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enz. Microb. Technol. 30: 889-894 https://doi.org/10.1016/S0141-0229(02)00037-6
  13. Chen, Q. H., G Q. He, and M. A. M. Ali. 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL 31410 with response surface methodology. Enz. Microb. Technol. 30: 667-672 https://doi.org/10.1016/S0141-0229(02)00028-5
  14. Cochran, W. G 1957. In Cox, G M. (ed.). Experimental Designs 2nd Ed., pp. 346-354. John Wiley and Sons. New York
  15. Devore, J. L. 1995. Probability and Statistics for Engineering and the Sciences, 4th Ed. p. 710. Duxbury Press; An International Thomson Publishing Company, US
  16. Dulaney, E. 1948. Observation on Streptomyces griseous II. Nitrogen sources for growth and streptomycin production. J. Biotechnol. 56:305-313
  17. Elibol, M. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process. Biochem. 39: 1057-1062 https://doi.org/10.1016/S0032-9592(03)00232-2
  18. Fulston, M., A. L. Stefanska, and J. E. Thirkettle. 2003. Methods for ansamitocin production. US Patent 6, 573, 074
  19. Hasegawa, T., S. Tanida, K. Hatano, E. Higashide, and M. Yoneda. 1983. Motile actinomycetes: Actinosynnema pretiosum subsp. pretiosum sp. nov., subsp. nov., and Actinosynnema pretiosum subsp. auranticum subsp. nov. Int. J. Syst. Bacteriol. 33: 314-320 https://doi.org/10.1099/00207713-33-2-314
  20. Hatano, K., E. Higashide, and M. Yoneda. 1984. Bioassay of ansamitocin P-3, an antitumor antibiotic. Agric. Biol. Chem. 48: 1899-1890 https://doi.org/10.1271/bbb1961.48.1899
  21. Hatano, K., M. Nakamishi, and S. I. Akiyama. 1982. Method for the production of antibiotic C-15003 P-3. US Patent 4, 356, 265
  22. Higashide, E., M. Asai, K. Ootsu, S. Tanida, Y. Kozai, T. Hasegawa, T. Kishi, Y. Sugino, and M. Yoneda. 1977. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature (London) 270: 721-722 https://doi.org/10.1038/270721a0
  23. Hillen, W. and C. Berens. 1994. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48: 345-369 https://doi.org/10.1146/annurev.mi.48.100194.002021
  24. Houng, J. Y, H. F. Hsu, Y. H. Liu, and J. Y. Wu. 2003. Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl 4-chloro acetoacetate by Bakers' yeast. J. Biotechnol. 100: 239-250 https://doi.org/10.1016/S0168-1656(02)00179-7
  25. Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Choi, and J. H. Kim. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J. Microbiol. Biotechnol. 14: 212- 215
  26. Kato, Y, L. Bai, Q. Xue, P. Revill, T.-W. Yu, and H. G. Floss. 2002. Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desrnethyl-2-methoxy-6-deoxyerythronolidev B. J. Am. Chem. Soc. 124: 5268-5269 https://doi.org/10.1021/ja0127483
  27. Kenneth, W. Y. M., G. S. Y. Miranda, and K. T. Wah. 1995. Formulation and optimization of two culture media for the production of tumor necrosis factor-b in Escherichia coli. J. Chem. Tech. Biotechnol. 62: 289-294 https://doi.org/10.1002/jctb.280620312
  28. Khuri, A. I. and J. A. Cornell. 1987. Response Surface Designs. Marcel Dekker Inc., New York
  29. Kim, H., H. J. Eom, J. S. Lee, J. S. Han, and N. S. Han. 2004. Statistical optimization of medium composition for growth of Leuconostoc citreum. Biotechnol. Bioprocess. Eng. 9: 278-284 https://doi.org/10.1007/BF02942344
  30. Kim, M. W, C. S. Shin, H. J. Yang, S. H. Kim, H. Y. Lim, C. H. Lee, M. K. Kim, and Y H. Lim. 2004. Naltriben analogues as peptide anticancer drugs. J. Microbiol. Biotechnol. 14:881-884
  31. King, V. A. 1993. Studies on the control of the growth of Saccharomyces cerevisiae by using response surface methodology to achieve effective preservation at high water activities. Int. J. Food Set Technol. 28: 519-529
  32. Krishna, S. H., A. P. Sattur, and N. G Karanth. 2001. Lipase-catalyzed synthesis of isoamyl isobutyrate - optimization using a central composite rotatable design. Process Biochem. 37: 9-16 https://doi.org/10.1016/S0032-9592(01)00161-3
  33. Kupchan, S. M., Y Komada, W. A. Court, G J. Thomas, R. M. Smith, A. Karim, C. J. Gilmore, R. C. Haltiwanger, and R. F. Bryan. 1972. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J. Am. Chem. Soc. 94: 1354-1356 https://doi.org/10.1021/ja00759a054
  34. Lai, L. S. T., C. C. Pan, and Y M. Tzeng. 2003. The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem. 38: 1317-1326 https://doi.org/10.1016/S0032-9592(02)00330-8
  35. Lidino, C. A., R. V. J. Chari, L. A. Bourret, N. L. Kedersha, and V. S. Goldmacher. 1997. Folate-maytansinoids: Target-selective drugs of low molecular weight. Int. J. Cancer 73: 859-864 https://doi.org/10.1002/(SICI)1097-0215(19971210)73:6<859::AID-IJC16>3.0.CO;2-#
  36. Liu, C, B. M. Tadayoni, L. A. Bourret, K. M. Mattocks, S. M. Derr, W. C. Widdison, N. L. Kedersha, P. D. Ariniello, V. S. Goldmacher, and J. M. Lambert. 1996. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Nat. Acad. Set USA 93: 8618-8623
  37. Liu, J. Z, L. P. Weng, Q. L. Zhang, H. Xu, and L. N. Ji. 2003. Optimization of glucose oxidase production by Aspergillus niger in a bench top bioreactor using response surface methodology. World J. Microbiol. Biotechnol. 19: 317-323 https://doi.org/10.1023/A:1023622925933
  38. Ma, A. Y. M. and B. Ooraikul. 1986. Optimization of enzymatic hydrolysis of canola meal with response surface methodology. J. Food Proc. Preserv. 10: 99-113 https://doi.org/10.1111/j.1745-4549.1986.tb00010.x
  39. MacNeil, D. J., K. M. Gewain, C. L. Ruby, G Dezeny, H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  40. Magnolo, S. K., D. L. Leenutaphong, J. A. DeModena, J. E. Curtis, J. E. Bailey, J. L. Galazzo, and D. E. Hughes. 1991. Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of bacterial hemoglobin. Bio-Technology 9: 473-476 https://doi.org/10.1038/nbt0591-473
  41. Malmberg, L.-H., W.-W. Hu, and D. H. Sherman. 1993. Precursor flux control through targted chromosomal insertion of the lysine-aminotranferase (lat) gene in cephamycin C biosynthesis. J. Bacteriol. 175: 6916-6924 https://doi.org/10.1128/jb.175.21.6916-6924.1993
  42. Manohar, B. and S. Diwakar. 2006. Applications of surface plots and statistical designs to selected lipase catalysed esterification reactions. Process Biochem. (in press)
  43. Momen, B., P. D. Anderson, and J. A. Helms. 2001. Application of response surface methodology and ANOVA to detect pollution effects on photosynthetic response under varying temperature and light regimes. Forest Ecol. Manage. 152:331-337 https://doi.org/10.1016/S0378-1127(00)00617-4
  44. Moss, S. J., L. Bai, S. Toelze, B. J. Carroll, T. Mahmud, T.-W. Yu, and H. G Floss. 2002. Identification of Asml9 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J. Am. Chem. Soc. 124: 6544-6545 https://doi.org/10.1021/ja020214b
  45. Murthy, M. V. R, E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 34: 269-280 https://doi.org/10.1016/S0032-9592(98)00095-8
  46. Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71
  47. Park, J. C, D. M. Ha, and M. G. Kim. 1996. Modified response surface methodology (MRSM) for phase equilibrium-theoretical background. Korean J. Chem. Eng. 13: 115-122 https://doi.org/10.1007/BF02705897
  48. Park, J. S., B. H. Kim, J. H. Lee, E. S. Seo, K. S. Cho, H. J. Park, H. K. Kang, S. K. Yoo, M. S. Ha, H. J. Chung, D. L. Cho, D. F. Day, and D. Kim. 2003. Optimization of novel glucanhydrolase production of Lipomyces starkeyi KSM 22 by statistical design. J. Microbiol. Biotechnol. 13: 993-997
  49. Pan, W. and B. G. Spratt. 1994. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol. Microbiol. 11: 769-775 https://doi.org/10.1111/j.1365-2958.1994.tb00354.x
  50. Perez-Llarenak, F. J., P. Liras, A. Rodriguez-Garcia, and J. F. Martin. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: Amplification results in overproduction of both $\beta$-lactam compounds. J. Bacteriol. 179: 2053-2059 https://doi.org/10.1128/jb.179.6.2053-2059.1997
  51. Rao, K. J., C. H. Kim', and S. K. Rhee. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35: 639-647 https://doi.org/10.1016/S0032-9592(99)00129-6
  52. Rosi, I. 1987. Wine fermentation by immobilized yeast: an optimization study. In Costamagna, L. and Bertuccioli, M. (eds.). Flavor Science and Technology; John Wiley and Sons, New York
  53. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Lab. Press, New York
  54. Sathosh, A., H. Ogawa, and Y. Satomura. 1976. Regulation of N-acetyl kanamycin amidohydrolase in the iodiophase in kanamycin fermentation. Agric. Biol. Chem. 40: 191-196 https://doi.org/10.1271/bbb1961.40.191
  55. Shaw, G. C. and A. J. Fulco. 1993. Inhibition by barbiturates of the binding of Bm3Rl repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium. J. Biol. Chem. 268: 2997-3004
  56. Spiteller, P., L. Bai, G Shang, B. J. Carroll, T.-W. Yu, and H. G. Floss. 2003. The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J. Am. Chem. Soc. 125: 14236-14237 https://doi.org/10.1021/ja038166y
  57. Stutzman-Engwall, K. J., S. L. Otten, and C. R. Hutchinson. 1992. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol. 174: 144-154 https://doi.org/10.1128/jb.174.1.144-154.1992
  58. Tanida, S., T. Hasegawa, K. Hatano, E. Highashide, and M. Yoneda. 1980. Ansamitocins, maytansinoids, antitumor antibiotics producing organism, fermentation and antimicrobial activities. J. Antibiot. (Tokyo) 32: 192-198
  59. Yu, T.-W, L. Bai, D. Clade, D. Hoffmann, S. Toelzer, K. Q. Trinh, J. Xu, S. J. Moss, E. Leistner, and H. G Floss. 2002. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Nat. Acad. Sci. USA 99: 7968-7973