막/생물반응기에서 Fluorescence in situ Hybridization 기법을 이용한 질산화 미생물 분포특성 및 질소제거 연구

Characteristics of Microbial Distribution of Nitrifiers and Nitrogen Removal in Membrane Bioreactor by Fluorescence in situ Hybridization

  • 임경조 (울산대학교 생명화학공학부) ;
  • 김선희 (한림대학교 환경생명공학과) ;
  • 김동진 (한림대학교 환경생명공학과) ;
  • 차기철 (연세대학교 환경공학부) ;
  • 유익근 (울산대학교 생명화학공학부)
  • Lim Kyoung-Jo (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim Sun-Hee (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Kim Dong-Jin (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Cha Gi-Cheol (Division of Environmental Engineering, Yonsei University) ;
  • Yoo Ik-Keun (School of Chemical Engineering & Bioengineering, University of Ulsan)
  • 발행 : 2006.09.01

초록

침지형 막/생물반응기에 암모니움 합성폐수를 공급하여 약 350일 동안 운전하면서 질산화 특성 및 미생물의 분포 변화를 살펴보았다. 원수의 암모니움 농도는 500-1000 $mgNH_4-N/L$, 질소 부하는 $1-2\;kgN/m^3{\cdot}d$로 공급하였고, 용존산소(DO)농도, 슬러지 체류시간(SRT), 온도 변화에 따른 질산화 효율, 아질산성 질소의 비율, 슬러지 농도, sludge volume index(SVI)변화를 모니터링 하였다. DO 농도, 온도, SRT 증가에 따라 암모니움 산화율은 증가하였으며, 이와 같은 암모니움 산화율의 감소로 MBR 내에서 free ammonia($NH_3-N$)농도가 증가할 경우 처리수에서 아질산성 질소의 비율이 높아졌다. 운전 기간 중 원인이 뚜렷하지 않은 질산화 효율의 급격한 감소가 관찰되었는데, 이때 슬러지 벌킹 및 SVI 값의 증가가 동시에 수반되었다. 운전 후반부에 질산화균이 우점된 MBR에 추가로 유기물을 공급하면, SVI 값이 2배로 증가하였고 암모니움 산화율은 감소하였다. FISH 분석에서 나타난 MBR내의 미생물 분포는 암모니아 산화균의 경우 Nitrosomonas가 우점하였으나 운전 후반부로 갈수록 Nitrosospira의 비율이 Nitrosomonas와 비슷할 정도로 증가하였다. 아질산 산화균은 Nitrospira가 우점하였지만 Nitrobacter 역시 운전기간 내내 관찰되었는데, 이는 MBR 내에서 높게 유지된 아질산성 질소가 Nitrobacter의 성장에 도움을 준 것으로 보인다.

An aerobic submerged membrane bioreactor (MBR) treating ammonium wastewater was studied in respect of nitrification characteristics and distribution of nitrification bacteria over a period of 350 days. MBR was fed with ammonium concentration of 500-1000 mg $NH_4-N/L$ at a nitrogen load of $1-2kg\;N/m^3{\cdot}d$. Overall ammonium oxidation rate increased with dissolved oxygen (DO) concentration, temperature, and sludge retention time (SRT). Under a higher concentration of free ammonia ($NH_3-N$) due to the decrease of ammonium oxidation rate, the nitrite ratio ($NO_2-N/NO_x-N$) in the effluent increased. The sudden collapse of nitrification efficiency accompanied by sludge foaming and the increase of sludge volume index (SVI) was observed unexpectedly during the operation. At the later stage of operation, additional carbon source was fed to the MBR and resulted in twice higher value of SVI and the decrease of ammonium oxidation rate. In fluorescence in situ hybridization (FISH) analysis, genus Nitrosomonas which is specifically hybridized with probe NSM156 was initially the dominant ammonia oxidizing bacteria and the amount of Nitrosospira gradually increased. Nitrospira was the dominant nitrite oxidizing bacteria during whole operational period. Significant amount of Nitrobacter was also detected which might due to the high concentration of nitrite maintained in the reactor.

키워드

참고문헌

  1. APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed., Washington DC
  2. Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Stinath. 1976. Inhibition of nitrification by ammonia and nitric Acid. J. Water Pollut. Con. F. 48: 835-852
  3. Daims, H., J. L. Nielsen, P. H. Nielsen, K. H. Schleifer, and M. Wagner. 2001. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 5273-5284 https://doi.org/10.1128/AEM.67.11.5273-5284.2001
  4. Fdz-Polanco, F., S. Villaverde, and P. A. Garcia. 1994. Temperature effect on nitrifying bacteria activity in biofilters : activation and free ammonia inhibition. Water Sci. Technol. 30: 121-130
  5. Gao, M., M. Yang, H. Li, Q. Yang, and Y. Zhang. 2004. Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater. J. Biotech. 108: 265-269 https://doi.org/10.1016/j.jbiotec.2003.12.002
  6. Garrido, J. M., M. C. M. van Loosdrecht, and J. J. Heijnen. 1997. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53: 168-178 https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  7. Ghyoot, W., S. Vandaele, and W. Verstraete. 1999. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor. Water Res. 33: 23-32 https://doi.org/10.1016/S0043-1354(98)00190-0
  8. Han, D. W., J. S. Chang, and D. J. Kim. 2002. Nitrifying microbial community analysis of nitrite accumulating biofilm reactor by fluorescence in situ hybridization. Water Sci. Technol. 47: 97-104
  9. Kim, D. J., J. S. Chang, D. I. Lee, D. W. Han, I. K. Yoo, and G. C. Cha. 2003. Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics. Water Sci. Technol. 47: 45-51
  10. Koops, H. P. and A. P. Roser. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37: 1-9 https://doi.org/10.1111/j.1574-6941.2001.tb00847.x
  11. Liebig, T., M. Wagner, L. Bjerrum, and M. Denecke. 2001. Nitrification performance and nitrifier community composition of a chemostat and a membrane-assisted bioreactor for the nitrification of sludge reject water. Biopro. Biosys. Eng. 24: 203-210 https://doi.org/10.1007/s004490100234
  12. Lim, B. R., K. H. Ahn, P. Songprasert, S. H. Lee, and M. J. Kim. 2004. Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination 161: 145-153 https://doi.org/10.1016/S0011-9164(04)90050-1
  13. Logemann, S., J. Schantl, S. Bijvank, M. Loosdrecht, J. G. Kuenen, and M. Jetten. 1998. Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microb. Ecol. 27: 239-294 https://doi.org/10.1111/j.1574-6941.1998.tb00540.x
  14. Manz, W., R. Amann, W. Ludwig, M. Wagner, and K. H. Schleifer, 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria : problems and solutions. System. Appl. Microbiol. 15: 593-600
  15. Pollice, A., V. Tandoi, and C. Lestingi. 2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res. 36: 2541-2546 https://doi.org/10.1016/S0043-1354(01)00468-7
  16. Rosenberger, S., U. Kruger, U. Witzig, R. Manz, U. Szewzyk, and M. Kraume. 2002. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 36: 413-420 https://doi.org/10.1016/S0043-1354(01)00223-8
  17. Schramm, A., D. de Beer, M. Wagner, and R. Amann. 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485
  18. Schramm, A., D. de Beer, J. C. van den Heuvel, S. Ottengraf, and R. Amann. 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65: 3690-3696
  19. Shim, J. K., I. K. Yoo, and Y. M. Lee. 2002. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor. Process Biochem. 38: 279-285 https://doi.org/10.1016/S0032-9592(02)00077-8
  20. Sofia, A., W. T. Liu, S. L. Ong, and W. J. Ng. 2004. In-situ characterization of microbial community in an A/O submerged membrane bioreactor with nitrogen removal. Water Sci. Technol. 50: 41-48
  21. Turk O. and D. S. Mavinic. 1989. Maintaining nitrite build-up in a system acclimated to free ammonia. Water Res. 23: 1383-1388 https://doi.org/10.1016/0043-1354(89)90077-8
  22. Urbain, V., B. Mobarry, V. de Silva, D. A. Stahl, B. E. Rittmann, and J. Manem. 1998. Integration of performance, molecular biology and modeling to describe the activated sludge process. Water Sci. Technol. 37: 223-229
  23. Wagner, M., G. Rath, H. P. Koops, and R. Amann. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34: 237-244
  24. Wiesmann, U. 1994. Biological nitrogen removal from wastewater. Adv. Biochem. Eng. Biotech. 51: 692-699
  25. Witzig, R., W. Manz, S. Rosenberger, U. Kruger, M. Kraume, and U. Szewzyk. 2002. Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 36: 394-402 https://doi.org/10.1016/S0043-1354(01)00221-4
  26. Yoon, H. J. and D. J. Kim. 2003. Nitrification and nitrite accumulation characteristics of high strength ammonia wastewater in a biological aerated filter. J. Chem. Tech. Biotechnol. 78: 377-383 https://doi.org/10.1002/jctb.751