Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants

근권세균과 식물을 이용한 유류 오염 토양의 생물복원

  • Kim Ji-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 김지영 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Published : 2006.09.01

Abstract

Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

산업발달과 인구증가로 인하여 석유계 탄화수소의 사용량이 점차 증가함에 따라 많은 양의 석유계 탄화수소가 환경에 잔류하여 토양과 지하수에 심각한 오염을 야기시키고 있으며, 인체에도 피해를 주게 된다. 유류오염토양을 복원하는 방법 중 생물을 이용한 복원기술은 경제적이고 환경친화적인 기술로서, phytoremediation 방법은 유류오염물질을 분해할 수 있는 미생물과 토양 내의 미생물량을 증가시킬 수 있는 고등식물을 함께 이용함으로써 생물복원기술의 효율을 극대화할 수 있는 방법이다. 토양 내 유류오염물질은 중금속, polychlorinated biphenyl, trichloroethylene, perchloroethylene 등의 오염물질과 달리 식물에 의해 분해 될 수 있기 때문에 유류오염물질 정화효율이 높은 식물종을 선택하는 것이 무엇보다 중요하다. 본 연구에서는 phytoremediation 기법을 이용하여 유류오염토양을 정화하는 과정에서 식물과 근권 미생물을 역할을 밝히고, 이전에 보고된 연구결과를 바탕으로 유류오염토양복원에 효과적인 식물종과 근권미생물을 알아보았다. 토양 내의 유류오염물질은 식물과 근권 미생물에 의해 분해제거되는데, 식물과 근권 미생물은 유류오염물질을 직접 분해하기도 하며 서로의 분해작용을 촉진하는 간접적 역할을 하기도 한다. 유류오염 토양의 정화에 선호되는 식물종은 alfalfa, ryegrass, tall fescue, poplar, corn 등이었으며, 탄화수소를 분해할 수 있는 것으로 밝혀진 미생물종은 주로 Pseudomonas spp., Bacillus spp., Alcaligenes spp. 등이었다. Phytoremediation 방법을 통해 토양 내 유류오염물질의 정화효율을 높일 수 있다는 연구결과가 보고되고 있다. 따라서 phytoremediation 과정에서 식물과 근권 미생물의 역할과 상호작용을 정확히 이해한다면 보다 효과적인 토양복원을 기대할 수 있을 것이다.

Keywords

References

  1. 김영웅, 2001. 유류오염 토양/지하수 환경복원 조사설계 사례. J. Kor. Geoenviron. Soc. 2: 10-19
  2. 박용하, 1995. 토양환경보전을 위한 오염방지기준 및 관리대책. 한국환경기술개발원
  3. 윤상희, 2005. 2004년 특정토양오염유발시설 설치 및 관리현황 보고. 환경부
  4. 최병순,국승욱,김진한,이동훈,박철희, 2001.토양오염 처리 기술. 토양오염개론. 동화기술. p. 237-244
  5. Al-Ghazawi, Z., I. Saadoun, and A. Al-Shak'ah. 2005. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils. J. Basic Microbiol. 45: 251-256 https://doi.org/10.1002/jobm.200410503
  6. Al-Sharidah, A., A. Richardt, J. R. Golecki, R. Dierstein, and M. H. Tadros. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol Res. 155: 157-164
  7. Andreoni, V., L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell'Amico, M. Colombo, and L. Gianfreda. 2004. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57: 401-412 https://doi.org/10.1016/j.chemosphere.2004.06.013
  8. Aprill, W. and R. C. Sims. 1990. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20: 253-265 https://doi.org/10.1016/0045-6535(90)90100-8
  9. ATSDR. 1999. Public health statement for total petroleum hydrocarbons (TPH)
  10. Banks, M. K., P. Kulakow, A. P. Schwab, Z. Chen, and K. Rathbone. 2003. Degradation of crude oil in the rhizosphere of sorghum bicolor. Int. J. Phytoremediation 5: 225-234 https://doi.org/10.1080/713779222
  11. Barac, T., S. Taghavi, B. Borremans, A. Provoost, L. Oeyen, J. V. Colpaert, J. Vangronsveld, and D. van der Lelie. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583-588 https://doi.org/10.1038/nbt960
  12. Baudoin, E., E. Benizri, and A. Guckert. 2003. Inpact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35: 1183-1192 https://doi.org/10.1016/S0038-0717(03)00179-2
  13. Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96: 1049-1055 https://doi.org/10.1016/j.biortech.2004.09.008
  14. Bollag, J. M., T. Mertz, and L. Otjen. 1994. Role of microorganisms in soil bioremediation. p. 2-10. In T. A Anderson and. J. R. Coats (ed.), Bioremediation Through Rhizosphere Technology. vol. 563, American Chemical Society: Washington, D.C. ACS Symposium Series, U.S.A
  15. Chang, J. H., S. K. Rhee, Y. K. Chang, and H. N. Chang. 1998. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol Prog. 14: 851-855 https://doi.org/10.1021/bp9800788
  16. Chen, Y. C., M. K. Banks, and A. P. Schwab. 2003. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environ. Sci. Technol. 37: 5778-5782 https://doi.org/10.1021/es030400x
  17. Chin-A-Woeng, T. F. C., G. V. Bloemberg, A. J. van der Bij, K. M. G. M. van der Drift, J. Schripsema, B. Kroon, R. J. Scheffer, C. Keel, P. A. H. M. Bakker, H. V. Tichy, F. J. de Bruijn, J. E. Thomas-Oates, and B. J. J. Lugtenberg. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11: 1069-1077 https://doi.org/10.1094/MPMI.1998.11.11.1069
  18. Cohen, M. F., J. Williams, and H. Yamasaki. 2002. Biodegradation of diesel fuel by an Azolla-derived bacterial consortium. J. Environ. Sci. Health Part A Toxic-Hazard Subst. Environ. Eng. 37: 1593-1606
  19. Committee on In Situ Bioremediation, Water Science and Technology Board, Commission on Engineering and Technical Systems, and National Research Council. 1993. In Situ Bioremediation : When Does It Work? National Academy Press, Washington, D.C., U.S.A
  20. Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. C. Hsu. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56: 55-114 https://doi.org/10.1016/S0065-2113(08)60179-0
  21. Dandie, C. E., S. M. Thomas, R. H. Bentham, and N. C. McClure. 2004. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J. Appl. Microbiol. 97: 246-255 https://doi.org/10.1111/j.1365-2672.2004.02087.x
  22. De Wever, H. and H. Verachtert. 1997. Biodegradation and toxicity of benzothiazoles. Wat. Res. 31: 2673-2684 https://doi.org/10.1016/S0043-1354(97)00138-3
  23. Dore, S. Y., Q. E. Clancy, S. M. Rylee, and C. F. Kulpa, Jr. 2003. Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl. Microbiol. Biotechnol. 63: 194-199 https://doi.org/10.1007/s00253-003-1378-4
  24. Durmishidze, S. V. 1977. Metabolism of certain air-polluting organic compounds in plant (review). Appl. Biochem. Microbiol. 13: 646-653
  25. Edwards, N. T., B. M. Ross-Todd, and E. G. Garver. 1982. Uptake and metabolism of 14C anthracene by soybean (Glycine max). Environ. Exp. Bot. 22: 349-357 https://doi.org/10.1016/0098-8472(82)90027-2
  26. Edwards, N. T. 1988. Assimilation and metabolism of polycyclic aromatic hydrocarbons by vegetation - An approach to this controversial issue and suggestions for future research, p. 211-229. In M. Cook and A.J. Dennis (eds.), Polycyclic aromatic hydrocarbons: A decade of progress. 10th Int. Symp. Battelle Press, Columbus, Ohio, U.S.A
  27. Escalante-Espinosa, E., M. E. Gallegos-Martinez, E. Favela-Torre, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413 https://doi.org/10.1016/j.chemosphere.2004.10.034
  28. Eweis, J. B., S. J. Ergas, D. P. Y. Chang, and E. D. Schroeder. 1998. Bioremediation principles. McGraq-Hill, Inc.: Toronto, Canada
  29. Farrell, R. E., C. M. Frick, and J. J. Germida. 2000. A database of plants that play a role in the phytoremediation of petroleum hydrocarbons. p. 29-40. Proceedings of the Second Phytoremediation Technical Seminar, Environment Canada, Ottawa, Canada
  30. Frick, C. M., R. E. Farrell, and J. J. Germida. 1999. Assessment of phytoremediation as an In-Situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada, Calgary, Canada
  31. Gunther, T., U. Domberger, and W. Fritsche. 1996. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33: 203-215 https://doi.org/10.1016/0045-6535(96)00164-6
  32. Hamnann, C., J. Hegemann, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173: 255-263 https://doi.org/10.1111/j.1574-6968.1999.tb13510.x
  33. Hegde, R. S. and J. S. Fletcher. 1997. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32: 2471-2479
  34. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. A. Greenberg. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81: 139-147 https://doi.org/10.1016/j.microc.2005.01.009
  35. Hutchinson, S. L., A. P. Schwab, and M. K. Banks. 2003. Biodegradation of petroleum hydrocarbons in the rhizosphere. p. 355-386. In S. C. McCutcheon, and J. L. Schnoor (eds.), Transformation and Control of Contaminants, Wiley, New York, U.S A
  36. Hynes, R. K., R. E. Farrell, and J. J. Germida. 2004. Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int. J Phytoremediation 6: 253-268 https://doi.org/10.1080/16226510490496591
  37. Ilori, M. O. and D. I. Amund. 2000. Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z Naturforsch [C]. 55: 890-897
  38. Jirausch, M., O. Asperger, and H. P. Kleber. 1986. Alcohol oxidation by Acinetobacter calcoaceticus EB 104-a n-alkane-utilizing and cytochrome P-450-producing strain. J. Basic Microbiol. 26: 351-357 https://doi.org/10.1002/jobm.3620260611
  39. Jordahl, J. L., L. Foster, J. L. Schnoor, and P. J. J. Alvarez. 1997. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ. Toxicol. Chem. 16: 1318-1321 https://doi.org/10.1897/1551-5028(1997)016<1318:EOHPTO>2.3.CO;2
  40. Kaksonen, A. H., M. M. Jussila, K. Lindstrom, and L. Suominen. 2006. Rhizosphere effect of Galega orientalis in oil-contaminated soil. Soil Biol. Biochem. 38: 817-827 https://doi.org/10.1016/j.soilbio.2005.07.011
  41. Kanaly, R. A., R. Bartha, K. Watanabe, and S. Harayama. 2000. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl. Environ. Microbiol. 66: 4205-4211 https://doi.org/10.1128/AEM.66.10.4205-4211.2000
  42. Karthikeyan, R., K. R. Mankin, L. C. Davis, and L. E. Erickson. 2003. Fate and transport of jet fuel (JP-8) in soils with selected plants. Int. J Phytoremediation 5: 281-292
  43. Ke, L., W. Q. Wong, T. W. Wong, Y. S. Wong, and N. F. Tam. 2003. Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51: 25-34 https://doi.org/10.1016/S0045-6535(02)00811-1
  44. Khomiakova. D. V., I. V. Botvinko, and A. I. Netrusov. 2003. Isolation of hydrocarbon-oxidizing psychrophilic bacteria from oil-polluted soils. Prikl Biokhim Mikrobiol. 39: 661-664
  45. King, J. M. H., P. M. DiGrazia, B. Applegate, F. Larimer, and G S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249: 778-781 https://doi.org/10.1126/science.249.4970.778
  46. Kingsley, M. T., J. K. Fredrickson, F. B. Metting, and R. J. Seidler. 1994. Environmental restoration using plant-microbe bioaugmentation. p. 287-292 In R. E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong (eds.), Bioremediatin of Chlorinated and Polyaromatic Hydrocarbon Compounds, Lewis Publishers, Boca Raton, FL, U.S.A
  47. Kuiper, I., G. V. Bioemberg, and B. J. J. Lugtenberg. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact. 14: 1197-1205 https://doi.org/10.1094/MPMI.2001.14.10.1197
  48. Kuiper, I., E. L. Lagendijk, F. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Rhizoremediation: A beneficial plant-microbe interaction (review). Mol. Plant Microbe Interact. 17: 6-15 https://doi.org/10.1094/MPMI.2004.17.1.6
  49. Lalande, T. L., H. D. Skipper, D. C. Wolf, C. M. Reynolds, D. L. Freedman, B. W. Pinkerton, P. G. Hartel, and L. W. Grimes. 2003. Phytoremediation of pyrene in a cecil soil under field conditions. Int. J Phytoremediation 5: 1-12 https://doi.org/10.1080/16226510390856439
  50. Leigh, M. B., J. S. Fletcher, X. Fu, and F. J. Schmitz. 2000. Root turnover: an important source of microbial substances in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36: 1579-1583 https://doi.org/10.1021/es015702i
  51. Lindstrom, J. E., R. C. Prince, J. C. Clark, M. J. Grossman, T. R. Yeager, J. F. Braddock, and E. J. Brown. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57: 2514-2522
  52. Liste, H. J. and M. Alexander. 2000. Plant-promoted pyrene degradation in soil. Chemosphere 40: 7-10 https://doi.org/10.1016/S0045-6535(99)00216-7
  53. Liste, H. H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43-52 https://doi.org/10.1016/j.apsoil.2005.04.006
  54. Liste, H. H. and I. Prutz. 2006. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of seathered hydrocarbons in contaminated soil. Chemosphere 62: 1411-1420 https://doi.org/10.1016/j.chemosphere.2005.05.018
  55. Lugtenberg, B. J. J. and L. A. de Weger. 1992. Plant root colonization by Pseudomonas spp.. p. 13-19. In E. Galli, S. Silver, and B. Witholt (eds.), Pseudomonas: Molecular Biology and Biotechnology, des. Am. Soc. Microbiol., Washington, D.C., U.S.A
  56. Lynch, J. M. and J. M. Whipps. 1990. Substrate flow in the rhizosphere. Plant Soil 129: 1-10 https://doi.org/10.1007/BF00011685
  57. Macek, T., M. Mackova, and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation (research review paper). Biotechnol. Adv. 18: 23-34 https://doi.org/10.1016/S0734-9750(99)00034-8
  58. McLean, L., J. Ireland, S. Hohn, and L. Herman. 1999. Preliminary report and design of using jack pines for the phytoremediation of diesel-contaminated soils in Northern Saskatchewan. p. 159-167. Proceedings of the Phytoremediation Technical Seminar, Calgary, Alberta. Ottawa, Canada
  59. Mehmannavaz, R., S. O. Prasher, and D. Ahmad. 2002. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium melioti. Process Biochem. 37: 955-963 https://doi.org/10.1016/S0032-9592(01)00305-3
  60. Menezes Bento, F., F. A. de Oliveira Camargo, B. C. Okeke, and W. T. Frankenberger, Jr. 2005. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res. 160: 249-255 https://doi.org/10.1016/j.micres.2004.08.005
  61. Merkl, N., R. Schultze-Kraft, andx M. Schultze-Kraf. 2005. Effect of the tropical grass Brachiaria brizantha (Hochst. Ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol. Res. 161: 80-91 https://doi.org/10.1016/j.micres.2005.06.005
  62. Mikolasch, A., E. Hammer, and F. Schauer. 2003. Synthesis of Imidazol-2-yl Amino Acids by Using Cells from Alkane-Oxidizing Bacteria Appl. Environ. Microbiol. 69: 1670-1679 https://doi.org/10.1128/AEM.69.3.1670-1679.2003
  63. Monferran, M. V., J. R. Echenique, and D. A. Wunderlin. 2005. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61: 98-106 https://doi.org/10.1016/j.chemosphere.2005.03.003
  64. Morgan, P. and R. J. Watkinson. 1994. Biodegradation of components of petroleum. p. 1-31. In C. Ratledge (ed.) Biochemistry of Microbial Degradation, Kluwer Academic Publisher, Dordrecht, Netherlands
  65. Muratova, A., T. Hubner, N. Narula, H. Wand, L. Turkovskaya, P. Kuschk, R. Jahn, and W. Merbach. 2003. Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol. Res. 158: 151-161 https://doi.org/10.1078/0944-5013-00187
  66. Nichols, T. D., E. C. Wolf, H. B. Rogers, C. A. Beyrouty, and C. M. Beyrouty. 1997. Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut. 95: 165-178
  67. Palmroth, M. R., J. Pichtel, and J. A. Puhakka. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol. 84: 221-228 https://doi.org/10.1016/S0960-8524(02)00055-X
  68. Palmroth, M. R., U. Munster, J. Pichtel, and J. A. Puhakka. 2005. Metaboilc responses of microbiota to diesel fuel addition in vegetated soil. Biodegradation. 16: 91-101 https://doi.org/10.1007/s10531-004-0626-y
  69. Pepi, M., A. Minacci, F. Di cello, F. Baldi, and R. Fani. 2003. Logn-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Antonie Van Leeuwenhoek. 83: 3-9 https://doi.org/10.1023/A:1022930421705
  70. Pilon-Smits, E. 2005. Phytoremediation. Annu Rev Plant Biol. 56: 15-39 https://doi.org/10.1146/annurev.arplant.56.032604.144214
  71. Plaza, G. A., K. Ulfig, and R. L. Brigmon. 2005. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Pol. J. Microbiol. 54: 161-167
  72. Pradhan, S. P., J. R. Conrad, J. R. Paterek, and V. J. Srivastava. 1998. Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam. 7: 467-480 https://doi.org/10.1080/10588339891334401
  73. Radwan, S. S., H. Al-Awadhi, N. A. Sorkhoh, and I. M. El-Nemr. 1998. Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol. Res. 153: 247-251
  74. Radwan, S., N. Dashti, and I. El-Nemr. 2005. Engancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert area. Int. J. Phytoremediation. 7: 19-32 https://doi.org/10.1080/16226510590915783
  75. Rahman, K. S., T. Rahman, P. Lakshmanaperumalsamy, and I. M. Banat. 2002. Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J. Basic Microbiol. 42: 284-291 https://doi.org/10.1002/1521-4028(200208)42:4<284::AID-JOBM284>3.0.CO;2-M
  76. Reilley, K. A., M. K. Banks, and A. P. Schwab. 1996. Organic chemicals in the environment: dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25: 212-219
  77. Rentz, A. J., B. Chapman, P. J. J. Alvarez, and J. L. Schnoor. 2003. Stimulation of hybrid poplar grwth in petroleum contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytoremediation 5: 57-72 https://doi.org/10.1080/16226510390856475
  78. Rentz, J. A., P. J. J. Alvarez, and J. L. Schnoor. 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 136: 477-484 https://doi.org/10.1016/j.envpol.2004.12.034
  79. Reynold, C. M. and D. C. Wolf. 1999. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation. p. 125-135. Proceedings of the Phytoremediation Technical Seminar, Calgary, Alberta, Ottawa, Canada
  80. Rojas-Avelizapa, N. G, R. Rodriguez-Vazquez, J. Martinez-Cruz, F. Esparza-Garcia, A. Montes de Oca-Garcia, E. Rios-Leal, and G. Fernandez-Villagomez, 1999. Isolation and characterization of bacteria degrading polychlorinated biphenyls from transformer oil. Folia Microbiol (Praha). 44: 317-321 https://doi.org/10.1007/BF02818554
  81. Ronchel, M. C. and J. L. Ramos. 2001. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67: 2649-2656 https://doi.org/10.1128/AEM.67.6.2649-2656.2001
  82. Ruberto, L., S. C. Vazquez, W. P. Mac Cormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioqugmentation on the bioremediation of a hydrocarbon contaminated Actarctic soil. Int. Biodeterior. Biodeg. 52: 115-125 https://doi.org/10.1016/S0964-8305(03)00048-9
  83. Schwab, A. P., M. K. Banks, and M. Arunachalam. 1995. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. p. 23-29. In R.E. Hinchee, D.B. Anderson, and R.E. Hoeppel (eds.), Bioremediation of Recalcitrant Organics, Battelle Press, Columbus, U.S.A
  84. Shao, Z. Z., Y. Xu, Y. F. Ma, and Q. Guo. 2004. Isolation and identification of two marine bacteria with hydrocarbon-biodegradation activity. Huan Jing Ke Xue. 25: 133-137
  85. Shcherbakova. V, A., K. S. Laurinavichus, A. M. Lysenko, N. E. Suzina, and V. K. Akimenko. 2003. Methanogenic sarcina from an anaerobic microbial community degrading p-toluene sulfonate. Mikrobiologiia 72: 547-553
  86. Shim, H., S. Chauhan, D. Ryoo, K. Bowers, S. M. Thomas, K. A. Canada, J. G. Burken, and T. K. Wood. 2000. Rhozosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl. Environ. Microbiol. 66: 4673-4678 https://doi.org/10.1128/AEM.66.11.4673-4678.2000
  87. Siciliano, S. D. and J. J. Germida. 1998. Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6: 65-79 https://doi.org/10.1139/er-6-1-65
  88. Siciliano, S. D., N. Fortin, A. Mihoc, G. Wisse, S. Labelle, K. Beaumier, D. Ouellette, R. Roy, L. G. Whyte, M. K. Banks, P. Schwab, K. Lee, and C. W. Greer. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67:2469-2475 https://doi.org/10.1128/AEM.67.6.2469-2475.2001
  89. Singer, A. C., D. Smith, W. A. Jury, H. Khoiviet, and D. E. Crowley. 2003. Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ. Toxicol. Chem. 22: 1998-2004 https://doi.org/10.1897/02-471
  90. Smith, R. M. 1994. The Physiology of aromatic hydrocarbon degrading bacteria. p 365-367. In C. Ratledge (ed.), Biochemistry of Microbial Degradation, Kluwer Academic Publisher, Dordrecht. Netherlands
  91. Sung, J., C. L. Munster, R. Rhykerd, M. C. Drew, and M. Y. Corapcioglu. 2003. The use of vegetation to remediate soil freshly contaminated recalcitrant contaminants. Wat. Res. 37: 2408-2418 https://doi.org/10.1016/S0043-1354(03)00029-0
  92. Sutherland, J. B. 1992. Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind Microbiol. 9: 53-62 https://doi.org/10.1007/BF01576368
  93. Tesar, M., T. G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol. Biochem. 34: 1883-1892 https://doi.org/10.1016/S0038-0717(02)00202-X
  94. Tischer, S. and T. Hubner. 2002. Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int. J. Phytoremediation 4: 187-203 https://doi.org/10.1080/15226510208500082
  95. Totevova, S., M. Prouza, J. Burkhard, K. Demnerova, and V. Brenner. 2002. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia. Folia Microbiol (Praga). 47: 247-254 https://doi.org/10.1007/BF02817646
  96. Ueno, A., M. Hasanuzzaman, I. Yumoto, and H. Okuyama. 2006. Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms. Curr. Microbiol. 52: 182-185 https://doi.org/10.1007/s00284-005-0133-8
  97. USEPA, 1999. Phytoremediation resource guide. EPA/52/B-99/0
  98. USEPA, 2004. Abstracts of remediation case studies, Volume 8, EPA/542/R-04/012
  99. Vervaeke, P., S. Luyssaert, J. Mertens, E. Meers, F. M. Tack, and B. Lust. 2003. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut. 126: 275-282 https://doi.org/10.1016/S0269-7491(03)00189-1
  100. Vogel, T. M. 1996. Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol. 7: 311-316 https://doi.org/10.1016/S0958-1669(96)80036-X
  101. Vogt, C., D. Simon, A. Alfreider, and W. Babel. 2004. Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol. Environ. Toxieol. Chem. 23: 265-270 https://doi.org/10.1897/02-446
  102. Wild, S. R. and K. C. Jones. 1992. Polynuclear aromatic hydrocarbon uptake by carrot grown in sludge-amended soil. J. Environ. Qual. 21: 217-225
  103. Wiltse, C. C., W. L. Rooney, Z. Chen, A. P. Schwab, and M. K. Banks. 1998. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27: 169-173
  104. Wolfe, N. L. and C. F. Hoehamer. 2003. Enzymes used by plants and microorganisms to detoxify organic compounds, p. 159-187. In S. C. McCutcheon and J. L. Schnoor (eds.), Phytoremediation: Transformation and Control of Contaminants, Wiley, New York, U.S.A
  105. Yoshitomi, K. J. and J. R. Shann. 2001. Com (Zea mays L.) root exudates and their impact on $^{14}C-pyrene$ mineralization. Soil Biol. Biochem. 33: 1769-1776 https://doi.org/10.1016/S0038-0717(01)00102-X