Antioxidant Characteristics and Phytoremediation Potential of 27 Taxa of Roadside Trees at Industrial Complex Area

공단지역에서 생육하는 가로수 27종의 항산화특성과 잠재적 환경정화능력

  • Han Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Oh Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim Pan-Gi (Department of Forest Resources and Environment, Sangju National University)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 김판기 (국립상주대학교 산림환경자원학과)
  • Published : 2006.09.01

Abstract

In order to screen for the best species for mitigating air pollutants by plants at an industrial complex area, we investigated antioxidant capacity, lipid peroxidation and nitrogen content in the leaves of 27 taxa of woody plants that are mostly utilized as roadside trees. Among 27 taxa, the highest value of antioxidant capacity was given by Cedrus deodara (91.4%) and the lowest one was by Firmiana simplex (56.9%). At lipid peroxidation level, little malondialdehyde (MDA) was observed in Lagerstroemia indica and Ginkgo biloba, but Platanus occidentalis, Castanoposis cuspidata var, sieboldii, Machilus thunbergii and Juniperus chinensis showed high MDA content. Antioxidant capacity of the deciduous woody plants was not significantly different in comparison with that of the evergreen ones. But MDA content of the deciduous woody plants was lower than that of the evergreen ones. The 27 taxa of woody plants appeared to be classified into four types: those of high antioxidant capacity and low lipid peroxidation, those of high antioxidant capacity and high lipid peroxidation, those of low antioxidant capacity and low lipid peroxidation, and those of low antioxidant capacity and high lipid peroxidation. The taxa included in these types are 7 (first type), 6 (second one), 8 (third one) and 6 (fourth one) taxa. first or second type species which have a high antioxidant capacity represented low nitrogen content in their leaves. However, third or forth type species which have low antioxidant capacity showed high nitrogen content in their leaves. Metasequoia glyptostroboides, Platycarya strobilacra and P. occidentalis which belong to the first or second type had extraordinarily high antioxidant capacity and high nitrogen content. Thus, three species are considered to be good phytoremediators for an industrial complex area.

대기오염물질을 정화하기에 적합한 수종을 탐색하기 위하여, 공단지역의 가로수로 식재된 27개 수종의 잎에서 항산화 능력, 과산화 지질 함량 및 질소함량을 조사하였다. 2깨 수종 중 항산화 능력이 가장 높은 수종은 개잎갈나무(91.4%) 이었고, 가장 낮은 수종은 벽오동(56.9%) 이었다. MDA함량이 가장 적은 수종은 배롱나무와 은행나무였으나, 양버즘나무, 구실잣밤나무, 후박나무 및 향나무에서는 높은 MDA 함량이 측정되었다. 낙엽활엽수의 항산화 능력은 상록수의 항산화 능력과 뚜렷한 차이가 없었으나, 낙엽활엽수의 MDA 함량은 상록수의 MDA 함량보다 낮게 나타났다. 27개 수종은 항산화 능력과 과산화지질 함량을 기준으로 하여 다음과 같이 4개의 범주로 구분하였다. 범주 I은 높은 항산화 능력과 낮은 과산화지질 함량을 가진 수종, 범주 II는 높은 항산화 능력과 높은 과산화지질 함량을 가진 수종, 범주 III은 낮은 항산화 능력과 낮은 과산화지질 함량을 가진 수종, 범주 IV는 낮은 항산화 능력과 높은 과산화 지질 함량을 가진 수종. 이들 4개 범주에 속하는 수종은 각각 7종(범주 I), 6종(범주 II), 8종(범주 3), 6종(범주 IV) 이었다. 높은 항산화 능력을 가진 범주 I과 II의 수종들은 낮은 질소함량을 나타냈으나, 낮은 항산화능력을 가진 범주 III과 IV의 수종들은 높은 질소함량을 나타냈다. 그러나 범주 I과 II에 속하는 메타세코이아, 굴피나무, 양버즘나무는 예외적으로 높은 항산화 능력과 높은 질소함량을 나타냄으로써 이들 수종들은 공단지역의 식재 수종으로 적합한 것으로 판단되었다.

Keywords

References

  1. Alscher, R. G., J. L. Donahue, and C. L. Cramer, 1997: Reactive oxygen species and antioxidants: relationship in green cells. Physiologia Plantarum 100, 224-233 https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  2. Azevedo Neto, A. D., J. T. Prisco, J. Eneas-Filho, C. E. B. Abreu, and E. Gomes-Filho, 2006: Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56, 87-94 https://doi.org/10.1016/j.envexpbot.2005.01.008
  3. Beauchamp, C., and I. Fridovichi, 1971: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anaytical Biochemistry 44, 276-297 https://doi.org/10.1016/0003-2697(71)90370-8
  4. Brand-Williams, W., 1995: Use of a free radical method to evaluate antioxidant activity. Food Science Technology (London) 28, 25-30
  5. Brunekreef, B., and S. T. Holgate, 2002: Air pollution and health. Lancet 360, 1233-1242 https://doi.org/10.1016/S0140-6736(02)11274-8
  6. Carlberg, I., and B. Mannervik, 1985: Glutathione reductase. Methods in Enzymology 113, 485-490
  7. Cornic, G., and A. Massacci, 1996: Leaf photosynthesis under drought stress. In NR Baker, eds, Photosynthesis and environment, Kluwer Academic Publishers, Dordrecht, pp 47-366
  8. Deepak, S. S., and M. Agrawal, 2001: Influence of elevated $CO_2$ on the sensitivity of two soybean cultivars to sulphur dioxide. Environmental and Experimental Botany 46, 81-91 https://doi.org/10.1016/S0098-8472(01)00086-7
  9. Fossati, P., L. Prencipe, and G. Berti, 1980: Use of 3,5- dichloro-2-hydroxy benzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. The Clinical Chemistry Methodology 26, 227-231
  10. Han, S.-H., J.-C. Lee, S.-S. Jang, and P.-G. Kim, 2004: Composted sewage sludge can improve the physiological properties of Betula schmidtii grown in tailings. Journal of Plant Biology 47, 99-104 https://doi.org/10.1007/BF03030638
  11. Han, S.-H., J.-C. Lee, W.-Y. Lee, Y. Park, and C.-Y. Oh, 2006: Antioxidant characteristics in the leaves of 14 coniferous trees under field conditions. Journal of Korean Forest Society 95, 209-215
  12. Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  13. Hill, A. C., 1971: Vegetation: a sink for atmospheric pollutants. Journal of the Air Pollution Control Association 21, 341-346 https://doi.org/10.1080/00022470.1971.10469535
  14. Imlay, J. A., 2003: Pathways of oxidative damage. Annual Review of Microbiology 57, 395-418 https://doi.org/10.1146/annurev.micro.57.030502.090938
  15. Law, R. D., and S. J. Crafts-Brandner, 2001: High temperature stress increases the expression of wheat leaf ribulose-1,5- bisphosphate carboxylase/oxygenase activase protein. Archives of Biochemistry and Biophysics 386, 261-267 https://doi.org/10.1006/abbi.2000.2225
  16. Mckersie, B. D., and Y. Y. Leshem, 1994: Stress and stress coping in cultivated plants. Kluwer Academic Publishes, Dordrecht
  17. Meloni, D. A., M. A. Oliva, C. A. Martinez, and J. Cambraia, 2003: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49, 69-76 https://doi.org/10.1016/S0098-8472(02)00058-8
  18. Ministry of Environment, 2005: Annual Report of Air Quality in Korea 2004. 145p
  19. Mittler, R., 2002: Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sciences 7, 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  20. Mooney, H. A., and S. L. Gulmon, 1982: Constrains on leaf structure and function in reference to herbivory. Bioscience 32, 198-206 https://doi.org/10.2307/1308943
  21. Morikawa, H., M. Takahashi, A. Sakamoto, T. Matsubara, G. I. Arimura, Y. Kawamura, K. Fukunaga, K. Fujita, N. Sakurai, T. Hirata, H. Ide, N. Nonyama, and Y. Kawamura, 2003: Metabolism and genetics of atmosphertic nitrogen dioxide control using pollutant-philic plants. In : S. C. McCutcheon, J. L. Schnoor (Eds.), Phytoremediation: Transformation and Control of Contaminants. Wiley-Interscience, Hoboken USA, 765-786
  22. Morikawa, H., M. Takahashi, A. Sakamoto, T. Matsubara, G. I. Arimura, Y. Kawamura, K. Fukunaga, K. Fujita, N. Sakurai, T. Hirata, H. Ide, N. Nonyama, and H. Suzuki, 2004: Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism. Planta 219, 14-22 https://doi.org/10.1007/s00425-003-1200-7
  23. Mwanamwenge, J, S. P. Loss, K. H. M. Siddique, and P. S. Cocks, 1999: Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). European Journal of Agronomy 11, 1-11 https://doi.org/10.1016/S1161-0301(99)00003-9
  24. Neil, S., R. Desikan, and J. Hancock, 2002: Hydrogen peroxide signalling. Current Opinion in Plant Biology 5, 388-395 https://doi.org/10.1016/S1369-5266(02)00282-0
  25. Noctor, G., and C. H. Foyer, 1998: Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  26. Reich, P. B., M. B. Walters, and D. S. Ellsworth, 1997: From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences USA 94, 13730-13734
  27. Rogers, H. H., J. C. Campbell, and R. J. Volk, 1979: Nitrogen- 15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206, 333-335 https://doi.org/10.1126/science.206.4416.333
  28. Schwanz, P., and A. Polle, 2001: Growth under elevated $CO_2$ ameliorates defenses against photo-oxidative stress in poplar (Populus alba X tremula). Environmental and Experimental Botany 45, 43-53 https://doi.org/10.1016/S0098-8472(00)00079-4
  29. Takahashi, M., A. Higaki, M. Nohno, M. Kamada, Y. Okamura, K. Matsui, S. Kitani, and H. Morikawa, 2005: Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 61, 633-639 https://doi.org/10.1016/j.chemosphere.2005.03.033
  30. Turcsanyi, E., T. Lyons, M. Plochl, and J. Barnes, 2000: Does ascorbate in the mesophyll cell walls form the first line of defense against ozone? Testing the concept using broad bean (Vicia faba L.). Journal of Experimental Botany 51, 901-910 https://doi.org/10.1093/jexbot/51.346.901
  31. Wellburn, A. R., 1994: Nitrogen oxides, In : A. R. Wellburn (Eds.), Air Pollution and Climate Change: the Biological Impact, Ed2. Longman Scientific & Technical England, pp 57-82
  32. Yoneyama, T., and H. Sasakawa, 1979: Transformation of atmospheric $NO_2$ absorbed in spinach leaves. Plant Cell Physiology 20, 263-266