가변 시간 분해능 시간 영역 전자파 해석법

An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept

  • 김형훈 (한양대학교 전자통신컴퓨터공학부) ;
  • 박종일 (한양대학교 전자통신컴퓨터공학부) ;
  • 김형동 (한양대학교 전자통신컴퓨터공학부)
  • Kim Hyung-Hoon (Department of Electrical and Computer Engineering, Hanyang University) ;
  • Park Jong-Il (Department of Electrical and Computer Engineering, Hanyang University) ;
  • Kim Hyeong-Dong (Department of Electrical and Computer Engineering, Hanyang University)
  • 발행 : 2006.09.01

초록

본 논문은 무조건 안정의 특징을 갖는 ADI-FDTD의 특성을 효과적으로 적용하기 위한 가변 분해능 시간 영역 전자파 해석법을 제안한다. 제안된 해석법은 관심 주파수 영역에서 정확도를 유지하면서 분해 시간 간격을 증가시켜 계산 시간을 감소시킬 수 있다.

To make the best use of known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical experiment shows that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest. The proposed method can be used to analyze electromagnetic problems with reduced computation time.

키워드

참고문헌

  1. T. Namiki, 'A new FDTD algorithm based on alternating direction implicit method', IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003-2007, Oct. 1999 https://doi.org/10.1109/22.795075
  2. F. Zheng, Z. Chen, and J. Zhang, 'Toward the development of a three-dimensional unconditionally stable finite difference time-domain method', IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1550-1558, Sep. 2000 https://doi.org/10.1109/22.869007
  3. G. Sun, C. W. Trueman, 'Some fundamental characteristics of the one-dimensional alternate-directionimplicit finite-difference time-domain method', IEEE Trans. Microwave Theory Tech., vol. 52, pp. 46-52, Jan. 2004 https://doi.org/10.1109/TMTF.2003.821230
  4. F. Zheng, Z. Chen, 'Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method', IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1006-1009, May 2001 https://doi.org/10.1109/22.920165
  5. S. G. Garcia, T. W. Lee, and S. C. Hagness, 'On the accuracy of the ADI-FDTD method', IEEE Antennas and Wireless Propgat. Lett., vol. 1, pp. 31-34, 2002 https://doi.org/10.1109/LAWP.2002.802583
  6. A. P. Zhao, 'The influence of the time step on the numerical dispersion error of an unconditionally stable 3-D ADI-FDTD method: A simple and unified approach to determine the maximum allowable time step required by a desired numerical dispersion accuracy', Microwave and Optical Tech. Lett., vol. 35, pp. 60-65, Oct. 2002 https://doi.org/10.1002/mop.10516
  7. G. Sun, C. W. Trueman, 'A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD', Microwave and Optical Tech. Lett., vol. 40, pp. 487-490, Mar. 2004 https://doi.org/10.1002/mop.20012
  8. H. Kim, H. Ling, 'Wavelet analysis of electromagnetic backscattering data', Electronics Lett., vol. 28, pp. 279-281, Jan. 1992 https://doi.org/10.1049/el:19920172
  9. H. Kim, H. Ling, 'Wavelet analysis of radar echo from finite-size targets', IEEE Trans. Antennas Propagat., vol. 41, pp. 200-207, Feb. 1993 https://doi.org/10.1109/8.214611
  10. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000