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MARKOVIAN EARLY ARRIVAL DISCRETE TIME
JACKSON NETWORKS

A. ABouUL-HAssaN! AND S. I. RABIA?

ABSTRACT

In an earlier work, we investigated the problem of using linear program-
ming to bound performance measures in a discrete time Jackson network.
There it was assumed that the system evolution is controlled by the early
arrival scheme. This assumption implies that the system can’t be modelled
by a Markov chain. This problem was resolved and performance bounds
were calculated. In the present work, we use a modification of the early
arrival scheme (without corrupting it) in order to make the system evolves
as a Markov chain. This modification enables us to obtain explicit expres-
sions for certain moments that could not be calculated explicitly in the pure
early arrival scheme setting. Moreover, this feature implies a reduction in
the linear program size as well as the computation time. In addition, we
obtained tighter bounds than those appeared before due to the new setting.

AMS 2000 subject classifications. Primary 60K25; Secondary 68M20.
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1. INTRODUCTION

Discrete time queueing systems received great interest in recent years because
they are commonly used in the design and analysis of many communication
and computer systems where the time is slotted. These systems include slot-
ted ALOHA, slotted Carrier-Sense Multiple-Access (CSMA) and Asynchronous
Transfer Mode (ATM) networks (see Atencia and Moreno, 2004; Gelenbe and Pu-
jolle, 1997; Li and Yang, 1998; Woodward, 1998). The present work is concerned
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with the analysis of a class of discrete time queueing networks namely discrete
time Jackson network with batch arrivals and single departure.

The simplest discrete time queueing network is the tandem queue. This model
working with Bernoulli arrivals (at the first node) and geometric service times at
all nodes was studied by Hsu and Burke (1976). It was shown that each node can
be treated independently as a Bernoulli arrivals-geometric service queue. This
result is very similar to that of the continuous time case (see Burke, 1956). A dis-
crete time Jackson network with Bernoulli arrivals and geometric service times at
all nodes was studied by Bharath-Kumar (1980). The generating function of the
number of customers at various nodes was derived. However, it was shown that
the independence property of the continuous time Jackson network (see Jackson,
1957) does not hold in the discrete setting. This is the starting point of the
present work as we will explain below. A general discrete time queueing net-
work model that allows for both arrivals and departures that are state dependent
was introduced by Henderson and Taylor (1990). It was proved that the model
possesses a product form solution.

As mentioned by Bharath-Kumar (1980), the discrete time Jackson network
does not have the decomposition property of the continuous time case. There-
fore, obtaining exact expressions for performance measures seems to be a hard
problem. In this paper, we treat the problem differently. Instead of obtaining
exact expressions for the performance measures, we calculate upper and lower
bounds on these measures by solving a linear program. The origin of this idea
appeared in the work of Kumar and Kumar (1994) to analyze a class of contin-
uous time queueing networks. In a previous work (see Aboul-Hassan and Rabia,
2002, 2003), we extended the application of this idea to include the discrete time
batch arrivals-geometric service Jackson network working under the early arrival
scheme (see Gelenbe and Pujolle, 1997). The system evolution of the model de-
scribed in Aboul-Hassan and Rabia (2002, 2003) does not follow a Markov chain.
However, this problem was resolved and performance bounds were calculated.
In the present work, we use a modification of the early arrival scheme (without
corrupting it) in order to make the system evolves as a Markov chain. This mod-
ification enables us to obtain explicit expressions for certain moments that could
not be calculated explicitly in Aboul-Hassan and Rabia (2002, 2003). Moreover,
this feature implies a reduction in the linear program size as well as the com-
putation time. In addition, we obtained tighter bounds than those appeared in
Aboul-Hassan and Rabia (2002, 2003) due to the new setting.

This paper is organized as follows. In Section 2, we describe the mathematical
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model of the network and introduce the notations that will be used throughout
this work. In Section 3, the model is analyzed by constructing a linear program
whose solution provides bounds on the performance measures. Numerical exam-
ples are presented in Section 4. Conclusions and some open problems are given
in Section 5.

2. MATHEMATICAL MODEL

We are interested here in analyzing a discrete time Jackson network. In the
discrete time setting (see for more details Gelenbe and Pujolle, 1997), the time
axis is divided into intervals of equal lengths called time slots. The boundaries
of these slots are called time points. System events, i.e., arrivals and departures,
occur at these time points. More precisely, system events occur only just after
or just before a time point. In order to be able to compute the system state at
any time point, one must determine the order at which arrivals and departures
occur. Hence, system evolution is assumed to be controlled by one of two basic
schemes: late arrival scheme or early arrival scheme. In the late arrival scheme
(see Figure 2.1), arrivals (external or internal) are assumed to occur at the end of

Departures

] Lt

External and
internal arrivals

FIGURE 2.1 Late arrival scheme.

a time slot where departures occur at the beginning of the time slot. According to
this scheme, an arriving customer to an idle server can’t depart during the same
time slot. He must wait until the next time slot (at least) in order to complete
his service. The other possibility is to control the system with the early arrival
scheme (see Figure 2.2). To do so, arrivals are assumed to occur at the beginning
of a time slot where departures take place at the end of the time slot. In contrast
to the late arrival scheme, an arriving customer to an idle server will get service
in the same time slot and may depart before the beginning of the next time slot.
In the present work, it is assumed that the system evolution is controlled by
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FIGURE 2.2 Pure early arrival scheme.
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FIGURE 2.3 Markovian early arrival scheme.

the early arrival scheme. However, in the pure early arrival scheme as the one
shown in Figure 2.2, the system state does not evolve as a Markov chain (see
Aboul-Hassan and Rabia, 2003, for more details). To overcome this problem, we
modify the scheme slightly by assuming that departures from a node arrive at
their destination before the beginning of the next time slot. In other words (see
Figure 2.3), we assume that external arrivals occur at the beginning of the time
slot whereas internal arrivals occur at the end of the time slot. This modification
implies that the system state evolves as a Markov chain. This variation of the
early arrival scheme was used in Gelenbe and Pujolle (1997).

The network consists of N nodes. Each node has an infinite queue and a
single server. At the beginning of the time slot n, n = 1,2,..., external arrivals
at node i, i = 1,2,..., N occur in batches. The batch size is denoted by A;(n).
We assume that {A;(n),n = 1,2,...} constitutes a time stationary stochastic
process as defined in Nelson (1995). Moreover, we assume that arrivals at different
nodes are independent. Throughout this paper, we will use the notation Y to
denote the expectation of the random variable Y. Hence, Ai(n) = E{4:i(n)},
A;2(n) = E{A;?(n)} and so on. Since the process {A;(n)} is time stationary, we
will write 4; to denote the expected number of arrivals at node ¢ during any time
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slot.

By the end of the time slot n, a single customer departs from node ¢ with
probability o; provided that node 7 is not empty. It is assumed that the service
probability o; is independent of the number of time slots that the customer has
stayed in this node. This assumption implies that the service time follows a
geometric distribution. The departure process at node ¢ is denoted by {R;(n)}
where R;(n) € {0, 1} is the number of departures from node i during the nt* time
slot. We will use R; to represent the steady state of the process {R;(n)}, i.e.,
R; = limy,_,o R;(n) assuming that the system is stable.

After the customer completes his service at node 7, he moves to node j with
probability P;; and leaves the network with probability 1 — Zj\;l P;;. We assume
for simplicity that P; = 0. The internal arrivals process at node 7 is denoted
by {Ki(n)} where K;(n) € {0,1,..., N — 1} is the number of internal arrivals at
node 4 during the n** time slot (see Figure 2.3). Moreover, K; = lim,, o K;(n)
represents the steady state of the process {K;(n)}.

The system state is given by X (n) = (X1(n), Xa(n),...,Xn(n)) where X;(n)
is the number of customers at node ¢ at the beginning of time slot n, n =
1,2,... and X(1) is the initial state. Following our notation the vector X =
(X1, X2,...,XnN) represents the steady state of the network.

Finally, we assume that the policy applied at each node is non-idling, i.e., the
server at node ¢ will be idle during the time slot n if and only if X;(n) = A;(n) = 0.

3. APPROXIMATE ANALYSIS

Our analysis is based on building up a linear program whose solution (for
both minimization and maximization) gives upper and lower bounds on the per-
formance measures. We are interested mainly in the expected number of cus-
tomers in the network. Hence, this will represent the objective function of the
linear program. The constraints (see Lemmas 3.1, 3.2) are obtained mainly by
assuming that the system reaches a steady state and examining the implication
of this assumption on the following moments:

E{X*(n)}, i =12,...,N,
E{X;(n)X;(n)}, 4,j=12,...,N, i #3].

Another set of constrains (see Lemma 3.3) is added due to the non-idling nature
of the applied policy. Moreover, a class of the constraints variables is shown to be
bounded. These bounds are given in Lemma 3.4. The complete linear program
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is presented in Theorem 3.1. Before presenting our results, we need the following
definitions:

DEFINITION 3.1. The utilization stochastic processes {U;j(n),n = 1,2,...},
i=1,2,...,N are defined as follows:

Ui(n) = 0, if node i is idle during the nt* time slot,

=1, otherwise.

Following our notations given in Section 2, U; = lim, o U;(n) and U; represénts
the steady state utilization at node ¢ which can be computed using the usual
traffic equations

U'iﬁi =A; + Z O'J.U—JPN (3.1)

DEFINITION 3.2. Assuming that the system is stable, we define the following
variables:

zij ITLII_)HC}OE{Uz(n)XJ(n)}, i,j = 1,2,...,N,
Uiz ZT}LII;OE{Uz(n)UJ(n)}, ’i,j = 1,2,...,N.

Note that the non-idling assumption implies that U;(n)X;(n) = X;(n) for all .
Moreover, since U;(n) € {0,1}, vy = U;.

The following lemma is a consequence of assuming that the system has reached
a steady state and examining the implication of this assumption on the moments
E{X*(n)}, i =1,2,...,N. In other words, we consider the consequence of the
equalities E{X;2(n + 1)} = E{X;%(n)}.

Lemma 3.1. Fori=1,2,...,N,
[ N —
Q(Ai — 0'1;)251',' + 2 Z O'ij,;Zji -+ Z Z vqu‘jO‘quz’Pqi + Ai2
J=1,5#i J=L,j#i g=1,q#4,9#]

N
J=157# j=1,j¢i
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Proor.

E{X(n+1)|X(n)} =
oo N-1 1

DY N (Xi(n) +a+k —1)2P(Ai(n) = a, Ki(n) = k, Ri(n) = r|X(n)).

a=0 k=0 r=0
After some simplifications, one arrives at the following result:
E{X(n+1)|X(n)} = X + 2X;(n)(4; + Ki(n) — Ri(n)) + A% + K %(n)
+ R;2(n) + 24;K;(n) — 2A;Ri(n) — 2K;(n)R;(n). (3.3)

It should be mentioned here that the expectations given in the right hand side
of the above equation are in fact conditional expectations based on knowing the
system state at time n: X(n). To avoid complications in notations, we didn’t
introduce a sperate notation for conditional expectations. The expectations m
and A;2(n) are system parameters and it is easy to show that

Rz(n) = R,Z(n) = U,(n)cr, (3.4)

The other expectations that appear in Equation 3.3 need further computation.
To compute K;(n), we define K;;(n) € {0,1} to be the number of customers that
depart from node j during the n** time slot and arrive at node i before the be-
ginning of the (n-+1)™ time slot. It can be easily proved that K;;(n) = R;(n)Pj;.
Using Equation 3.4, then K;;(n) = Uj(n)o;Pj;. Since Ki(n) = Z;V:L#i Kij(n),

Z U;(n)o; Pj:. (3.5)

J=13#i

To compute A;K;(n), one notes that arrivals to the network during any time slot
are independent of the network state. Moreover, the number of internal arrivals
Ki(n) at node i during the n** time slot does not depend on the number of
arrivals A; to the same node during the same time slot due to the assumption
that P; = 0. Therefore, A; and K;(n) are independent. Hence,

L N

AKi(n) = A4 Ki(n) =4; Y Uj(n)o;Pyi. (3.6)

Jj=1,j#1

To compute K;2(n), we apply Equation 3.5 and use the independence among
K;j(n)s for the same ¢ to obtain

N
Z Var{K;;(n)} +( Z Uj(n)o;Pj)

J=1,j#i J=1,5#i
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Because Kj;;(n) € {0,1}, one can check that

Var{K;(n)} = Uj(n)a;Pj; — (U;(n)o; Pji)*.

N N
K2(n Z Uj(n)o; Py + Z Z (Uj(n)a;P;i)(Ug(n)ogFyi). (3.7)

j=Lj#i J=1,3#i q=1,q#1,9#j

To compute A;R;(n), we note that the single service assumption implies that

iri P(A; = a;, Ri(n) =r;)

a;=07;=0

= Y aiP(4i = a;)P(Ri(n) = 1|4 = as). (3.8)

ai=1

The early arrival assumption implies that
P(R;(n) = 1|Ai(n) = a; > 0) = o;. (3.9
Substituting from Equation 3.9 into Equation 3.8, |
W = Ao (3.10)

To derive an expression for K;(n)R;(n) , one notes that for the present setting
the two random variables K;(n) and R;(n) are independent for all n. The in-
dependence follows essentially from the assumption that internal arrivals occur
before the beginning of the next time slot. This implies that departures from
node 7 during a time slot are not affected by internal arrivals at the same node
during the same time slot. Moreover, internal arrivals at node 7 during a time
slot are not affected by departures from the same node during the same time slot
because P; = 0. Hence,

Ki(n)Ri(n) = Ki(n) Ri(n).

Substituting from Equations 3.4 and 3.5,

K;(n)Ri(n) Z U;(n)o; Pj. (3.11)

J=15#i
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Now, substituting from Equations 3.4, 3.5, 3.6, 3.7, 3.10 and 3.11 into Equation
3.3, taking the expectation of both sides and applying the steady state assump-
tion,

N N
24X+ Y. XiUjoP; —o0iX; Z Ujo;Pji
J=1,j#i J=Lj

qua'jO'ququi + EO‘,‘ + 2E Z __U_jO'iji
J=1,j#1 q=1,97i,q#j J=Lj#

— 2%0} — 20’@ Z UinO'iji =0.
j=1j#i

Applying Definition 3.2 to the above equation gives Equation 3.2 which completes
the proof. a

The next lemma gives the consequence of the steady state assumption on the
moments E{X;(n)X;(n)}, 4,7 =1,2,...,N, i #j.

LEMMA 3.2. Fori=1,2,....N—1, j=i+1,i+2,...,N,

N N
Ajzii -+ Z O'qquZqi — 024 + Aiij + Z O'qPqiij — 03245 + Az Aj
9=1,9#j q=1,9#i

N N
+ A Z UgoqPy; + AioiPyj — A; Ujo; + A; Z UqoqPyi + A;j0; Py

q=1,q#4,9#]j q=1,97#1,q#j
N N N
+ Z Z Vq1420910 g0 PyiPaaj — 0 Z Vjq0qPgi — Ujo; Pji
ai=l,q1#t 2=1,2#5. 1 #q q=1,97#1,q#j
N
- Aj Uo; — 03 Z ’Uqu'qqu — UiO‘iPij + V40105 = 0. (3.12)
q=1,9#1,9#j
PrOOF.

E{Xi(n+1)X;{n+1)[X(n)} =
oo N-1 1 oo N-1 1

ZZZZZZ +az+k )x(Xj(n)+aj+kj—rj)x

a2;=0k;=07r;=0a;=0k;=07;=

P(Ai(n) = a;, Ki(n )—kZaRi(n):TiaAj(n)—awK( )= kaRJ( )—Tj|X(n))
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After some simplification, we obtain
E{Xi(n+1)X;(n+1)|X(n)} = X;(n)X;(n) + Xi(n)(4; + K;(n) — R;(n))
+ Xj (n)(E + Kz(n) — &(Tl)) + AiAj + AzKJ(n) — A,,RJ(TZ) + AjKi(n)
+ Ki(n)Kj(n) — Ki(n)Rj(n) — A;Ri(n) — Ri(n)K;(n) + Ri(n)R;(n). (3.13)

As mentioned in the proof of Lemma 3.1, the expectations given in the right
hand side of the above equation are conditionals ones. The main task now is to

compute the expectations in the right hand side of Equation 3.13. Since arrivals
at different nodes are independent,

Adj = A A (3.14)
Next, we consider 4;K;(n). Note that in Aboul-Hassan and Rabia (2002, 2003),
A; and Kj(n) were independent. In the present setting they are not inde-

pendent as it will be shown in the following derivation. Recall that K;(n) =

Z(I;V:l,q;éj Kjq(n). Hence,

N N
AZK](TL) = Z Ainq(n) = Z Ainq(n) + Aini(n). (3.15)
q=1,9#] q=1,g#5,q#1
During any time slot n, the number of internal arrivals Kj,(n) at node j that
are coming from node g are independent of the number of external arrivals A; at
node i for q # i. Hence,
N N
Z AiKjq(n) = Z 71_inq(")-

q=1,9#7,9#1 q=1,g#j,q#1

Recall that K;;(n) = Uj(n)o,;Pj;. Hence,

N N
Y. AKn)= Y AU(n)ogPy. (3.16)
g=1,975,9#1 g=1,q#7,q7#1
On the other hand, the number of internal arrivals Kj;(n) at node j that are
coming from node i are clearly dependent on A;. To compute A;Kj;(n), we
proceed as follows:

00 1
Aini(n) = Z Z azk]zP(A‘L = Qi KJ’L(n) = kﬂ)
;=0 k;;=0

= 3 aiP(Ai = Q;, KJ(TL) = 1)- (317)

a;=1
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Note that {Kj;(n) = 1} implies that {R;(n) = 1} (the reverse implication is not
true). Hence,

P(Ai = ay, Kﬂ(n) = 1)
= P(Az = ai, R4(n) = 1, sz(n) = 1)
= P(Az = ai) X P(R/,,(n) = 1[./4@ = ai) X P(Kji(n) = 1|Az = a;, Rz(n) = 1).

Applying Equation 3.9, then
P(A; = a;, Kji(n) =1) = P(A; = a;)0:P;;.
Substituting from the above equation into Equation 3.17 yields,
A;Kji(n) = Aioi Py (3.18)

Substituting from Equations 3.16 and 3.18 into Equation 3.15 gives the required
result

N
AiKj(n) = 4 Z Uqg(n)ogPyj + AioiPj. (3.19)
q=1,q#5,q7

We consider now m Number of departures R;(n) from node j during the
nt* time slot depends only on the state X;(n) of the node at the beginning of the
time slot, the number of arrivals A; to this node during the same time slot and the
service probability ;. This implies that A; and R;(n), i # j, are independent.
Using Equation 3.4, then

AiR;(n) = AiUj(n)o;. (3.20)
To compute K;(n)K;(n), recall that K;(n) = Eﬁzl’q#i Kig, (n) and Kj(n) =
gzl’q#j Kjq,(n). Hence,
N N
KmKin)= > > Kg®Ks®). (3.21)

1=L,q1#i g2=1,q2#J

Since Kig (n), Kiqs(n) € {0,1},

Kig (n)Kjg,(n) = P(Kiq,(n) =1, Kjg,(n) =1).

If g1 = g2, then the two events {K;q, (n) = 1} and {Kjq, (n) = 1} are disjoint
because {Kiq (n) = 1} implies that {Kjq (n) = 0}. On the other hand, the
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events {K;q, (n) = 1} and {Kjq,(n) = 1} are independent if ¢; # g2 because the
behavior of departing customers at different nodes are independent. Hence,

Kiq (n)Kjg,(n) = 0, n=90
= P(Kig, (n) = 1) x P(Kjg,(n) = 1), Q1 # g (3.22)
From the definition of the stochastic process {Kiq(n), n > 1}, then

P(Kig (n) =1) = P(Rg,(n) = 1) x Pys = Ry, (n) X .

Substituting for Ry, (n) from Equation 3.4, then
P(Kig (n) = 1) = Uy (n)og; Pyi- (3.23)

Similarly,
P(Kjg(n) =1)= Ug(n)og, Py,j.- (3.24)

Substituting from Equations 3.23 and 3.24 into Equation 3.22,

Kig (n)Kjg,(n) =0, Q=q
= Uy, (n)qu (n)aqlaquqlipqzj’ qQ # . (3.25)

Substituting from Equation 3.25 into Equation 3.21, we obtain the required ex-
pression

N N

K (mKin)= Y > Ug (n)Ug, (n)0g, 09, PgiPgyj.  (3.26)
a1=1,q1#i g2=1,q275,q17#q2

The remaining expectations are R;(n)R;j(n) and R;(n)K;(n). In Aboul-Hassan
and Rabia (2002, 2003), we were not able to obtain explicit expressions for these
expectations. For the present setting, these expectations are calculated as follows.
For R;(n)Rj(n), the result is based on the independence between R;(n) and
Rj(n). As said before, the number of departures R;(n) from node i during time
slot n depends only on three factors: X;(n), A; and ;. These factors are not
related to R;(n). Hence,

Substituting from Equation 3.4 gives the required result

Ri(n)Rj(n) = Ui(n)Uj(n)o;0;. (3.27)
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The derivation of R;(n)K;(n) is similar to A;K;(n). Recall that

N
Kj(n)= 3 Kjn).

q=1,q#]
Hence,
- N N
R(K;j(n)= Y RmEK;n)= Y R(n)Kj®)+ R(n)Ksun).
g=1,9#j q=1,g#j,971

(3.28)
The number of internal arrivals Kj,(n) at node j that are coming from node ¢
are independent of the number of departures R;(n) from node i for ¢ # 7. Hence,

N N
> RMKm) = Y. Ri®) K0,

q=1,9#7,9#1 q=1,9#3,9#1

Recall that K;;(n) = Uj(n)o;Pj; and Ri(n) = Us(n)o; . Hence,
N N
S ROE,m=Uma Y UfmolPy — (329)
9=1,9#5.9#1 9=1,97#7,97

On the other hand, the number of internal arrivals Kj;(n) at node j that are
coming from node % are clearly dependent on R;(n). To compute R;(n)Kj;(n),
we note that since a single service is assumed,

R Ez(m) = P(Ri(n) = 1, Kji(n) = 1). (3.30)

However,

)

P(Ri(n) =1, Kji(n) =1) = P(Ri(n) = 1)P(Kji(n) = 1|Ri(n) = 1)
= Ri(n)Fy.

Substituting for R;(n) from Equation 3.4, then
P(R,L(TL) = 1, Kji(n) = 1) == Ui(n)aiPij.
Now, substituting from the above equation into Equation 3.30 yields,

Ri(n)Ki(n) = Us(n)o: Py;. (3.31)
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Substituting from Equations 3.29 and 3.31 into Equation 3.28 gives the required
result

N
R(n)K;(n) =Ui(n)o; Y. Uy(n)o Py + Us(n)o;Py. (3.32)
q=1,g#j.9#i
Now, substituting from Equations 3.4, 3.5, 3.14, 3.19, 3.20, 3.26, 3.27 and 3.32
into Equation 3.13, taking the expectation of both sides and applying the steady
state assumption,

N
i Xi+ U, Xi0,Py — U; Xi05 + A; X; + 2 X0,

N
+A A+ A ) UgogPy + AioiPy ~ AiUjos + 4; Z UqoqPyi

q=1,9#1,9#] q=1,q#1,9#j
N N
+ Ajo Py + Z Z UgUg204199: Py Poj
@1=1,q1 #1 g2=1,92#7,91 #q2
N
—0; Y, UUgoPy = TUjoiPsi— Alioi—oi Y TUgoqPy
q=1,97#1,9#j q=1,q#4,9#7j

- U;'O'ipij + UinO'iO'j =0.

Applying Definition 3.2 to the above equation gives Equation 3.12 which com-
pletes the proof. a

The following lemma is a consequence of the non-idling nature of the service
policy.

LEMMA 3.3. Fori,j=1,2,...,N, i # j, we have
Zjs < Zy. (3.33)

PRroOOF. Recall from Definition 3.2 that z;; = lim,, .o E{U;(n)X;(n)}. The
non-idling nature of the policy applied at each node implies that X;(n) = 0 if
Ui(n) = 0. However, for i # j, U;j(n) may be zero when X;(n) > 0. Hence,
U;(n)X;(n) < Ui(n)X;(n) for all n > 1. Taking the expectation of both sides and
assuming a steady state exists, give Equation 3.33. O

The following lemma shows that the variables v;; are bounded (below and above).
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LemmaA 34, Fori=12,...,N-1, j=i¢+1,i+2,...,N,
T+T; - 1) < vy < min(T;, T). (3.34)
ProOOF. Recall from Definition 3.2 that v;; = liMnooo E{U;(n)Uj(n)}. Since
Ui(n),U;(n) € {0,1},
E{U(n)U(n)} = P(Ui(n) = 1, U(n) = 1). (3.35)
However,
{P(Ui(n) =1) + P(U;(n) = 1) - 1} < P(Ui(n) = L,Uj(n) = 1)

< min(P(Ui(n) = 1), P(Uj(n) = 1)).
(3.36)

Since Uj(n),U;(n) € {0,1},

Tiw) = P(Ui(n) = 1), Ty(n) = P(U;(n) = 1). (3.37)
Substituting from Equation 3.37 into Equation 3.36,
(T:m) + Ts(n) ~1)* < P(Ui(n) = 1, Uj(n) = 1) < min (T;(n), T;(m)). (3.38)

Combining Equations 3.38 and 3.35 and taking the limit as n tends to infinity
give Equation 3.34. g

The previous lemmas are the building blocks of the following theorem which is
the main result of this work. It enables us to calculate a lower bound on the
expected number of customers in the system by solving a linear program.

THEOREM 3.1. In the steady state, the expected number of customers in the
above described discrete time Jackson network is bounded below by the solution of
the following linear program

N
min E Zii
i=1

subject to the constraints given in Lemmas 3.1, 3.2, 3.8 and 3.4 by the Equations
3.2, 8.12, 3.33 and 3.34 in addition to:

Vij = Yji, i=1,2,.,.N-1, j=1+1,i4+2,...,N, (3.39)
vi; =U;, i=1,2,...,N, (3.40)
ZijZO, ’i,j=1,2,...,N. (3.41)
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PROOF. Recall from Definition 3.2 that z;; = limp o E{U;(n)X;(n)}. Since
we assume a non-idling policy, E{U;(n)X;(n)} = E{X;(n)}. Hence, va: 1 % =
lim,—eo 3.V ; E{X;(n)} which proves that the objective function represents the
expected number of customer in the network. The constraints in Equations 3.39
and 3.40 follow obviously from the definition of the variables v;;. Finally, Equa-
tion 3.41 represents the non-negativity constraints. 0

REMARK 3.1. To obtain an upper bound on the expected number of cus-
tomers in the network, the minimization problem in Theorem 3.1 is replaced by a
maximization one. Moreover, bounds on the expected delay time can be obtained
using Little’s theorem.

. REMARK 3.2. The number of constraints in the linear program of Theorem
3.1 equals 4N2—N. The corresponding linear program presented in Aboul-Hassan
and Rabia (2002, 2003) had 6 N? — 2N constraints. Hence, the present setting
leads to a reduction of at least 30% of the linear program size. This implies a
corresponding reduction in the computation time especially for large values of N.

4. NUMERICAL RESULTS

In this section, we examine numerically the result given in Theorem 3.1. The
computation process is fully automated. A Mathematica (see Wolfram, 1996)
program is written to handle this task. Only the network specifications are given
and the program generates the corresponding linear program and solves it for both
minimization and maximization. Several network configurations are treated:

e For the arrival process, we examine Bernoulli and Poisson arrivals with
equal and non-equal arrival rates. Bernoulli (res. Poisson) arrivals mean
that A;(n) follows a Bernoulli (res. Poisson) distribution with a certain
parameter p (res. A) for all n. The parameters p and A are adjusted
automatically form inside the program to generate the required load factor.
In the equal arrival rate case, we assume that A; are the same for all i. In
the non-equal arrival rates case, we assume that A; = i§ where the value
of the parameter £ will be chosen by the program to produce the required
load factor. '

e Service probabilities o; are assumed to be equal.

e For the internal routing, both uniform and non-uniform routings are con-
sidered. By uniform routing, we mean that the departing customer from
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node i has equal chances of joining any other node or departing from the
network, i.e., Pij = 1/N, 4,j = 1,2,...,N, i # j. For the non-uniform
traffic case, we consider what we call neighborhood routing. In this type
of routing, we assume that the departing customer from node ¢ either joins
node 7 + 1 or departs from the network. Departing customer from node N
either joins node 1 or departs from the network. In other words, the routing
matrix [P;;] takes the form:

0 Po 0 ...0
0 0 Py3...0

Py; 0 0 ...0
We assume that Py = Pa3 = --- = Pyy. For this choice, the two types of
routing are identical for N = 2.

o The results are calculated for different number of nodes and different load
factors.

The results based on Theorem 3.1 are compared with simulation results. A
sample path of 30,000 time slots is generated for each network configuration.
The first 1,000 time slots are deleted to remove the effect of the transient period.
From a computational time point of view, it is noted that calculating performance
bounds using our approach is at least 10 times faster than generating a simulation
estimate for all the cases we considered. The detailed results for Bernoulli arrivals
case are shown in Tables 4.1-4.4. The obtained bounds bracket the simulation
results with different degrees of tightness. Moreover, in some heavy traffic cases,
the simulation results underestimate or overestimate the required value which is
bracketed by our bounds. In such cases, a larger sample path is needed to obtain
better simulation estimates.

To examine the tightness of the bounds, we plot bounds difference for different
network configurations in Figures 4.1 and 4.2. Uniform routing results are shown
in Figure 4.1 whereas neighborhood routing results are shown in Figure 4.2. The
first column of both figures represents the results of Bernoulli arrivals and the
second column represents those of Poisson arrivals. The first row of both figures
represents the results for the equal arrival rates case whereas the second row gives
those of the non-equal arrival rates case. In each graph of Figures 4.1 and 4.2, we
plot the difference between the upper and lower bounds on the expected number
of customers in the network against load factor for different number of nodes.
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TABLE 4.1 Uniform traffic with equal arrival rates.

N=2 N=/4
Load factor Lower  Upper Simulation Lower  Upper Simulation
0.1 0.140 0.168 0.159 0.307  0.391 0.360
0.2 0.317  0.379 0.344 0.695  0.882 0.793
0.3 0.546  0.654 0.582 1.200  1.520 1.424
0.4 0.856 1.020 0.876 1.870  2.370 2.045
0.5 1.290 1.540 1.288 2.820 3.580 3.192
0.6 1.950 2.200 2.051 4.260 5.010 4.680
0.7 3.050  3.300 3.182 6.660  7.410 6.857
0.8 5.270 5.520 5.980 11.500 12.200 10.860
0.9 11.900 12.200 10.890 26.000 26.700 28.070
N=6 N=8
Load factor  Lower  Upper Simulation Lower  Upper Simulation
0.1 0474 0.613 0.536 0.641  0.835 0.757
0.2 1.070 1.380 1.298 1.450  1.880 1.769
0.3 1.840 2.380 2.170 2.490 3.240 2.872
04 2.880  3.710 3.011 3.890  5.050 4.477
0.5 4.340 5.590 5.007 5.850 7.600 6.101
0.6 6.540 7.790 7.457 8.800 10.600 9.171
0.7 10.200  11.500 10.590 13.700 15.500 14.990
0.8 17.600 18.800 17.940 23.600 25.400 23.370
0.9 39.700 40.900 36.410 53.300 55.100 53.740
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From the results shown in Figures 4.1 and 4.2, we have the following remarks.
The obtained bounds are tight in the light loading case. Increasing the load factor
decreases this tightness especially when the number of nodes in the network is
also increased. However, for uniform routing with equal arrival rates, the bounds

difference approaches a certain limit as a function of the load factor.

In all

cases, the behavior of the Bernoulli and Poisson arrivals are nearly the same. To
bring the obtained bounds tighter, we need to add another set of constraints.
We suggest examining the implication of a steady state assumption on higher
moments such as E{X3(n)}, i = 1,2,..., N. However, this seems to lead to a
non-linear programming problem. This point needs more investigation.
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TABLE 4.2 Uniform traffic with different arrival rates.

N=2 N=4
Load factor Lower  Upper Simulation Lower  Upper Simulation
0.1 0.127 0.149 0.142 0.275 0.345 0.317
0.2 0.282  0.333 0.301 0.612 0.769 0.718
0.3 0.477  0.567 0.490 1.030 1.310 1.183
0.4 0.725  0.875 0.771 1.560 2.010 1.730
0.5 1.050 1.300 1.140 2.250 2.990 2.487
0.6 1.500 1.880 1.572 3.170 4.300 3.420
0.7 2220 2.780 2.407 4490  6.240 5.249
0.8 3.540  4.560 3.903 6.620 10.100 7.725
0.9 7.190 9.880 6.517 11.700 21.500 14.160
N=6 N=8
Load factor  Lower  Upper Simulation Lower Upper Simulation
0.1 0.431 0.551 0.523 0.591 0.763 0.755
0.2 0.959 1.230 1.163 1.320 1.710 1.629
0.3 1.620 2.090 1.908 2.220 2.900 2.523
04 2.450 3.230 2.914 3.380  4.480 4.070
0.5 3.550 4.800 4.088 4.910 6.670 5.333
0.6 5.030 6.860 5.839 7.000 9.490 8.081
0.7 7.160 9.930 8.605 10.000 13.700 11.130
0.8 10.500 16.000 11.930 14.900 22.100 18.110
0.9 17.400 34.200 22.110 24.600 47.300 31.560

5. CONCLUSIONS

This work was devoted to the analysis of discrete time Jackson networks.
Instead of obtaining exact expressions for performance measures, we calculated
upper and lower bounds on these measures. The bounds were obtained by con-
structing a linear program whose objective function is the required performance
measure (mainly the expected number of customers in the network) and solving
it for both minimization and maximization. The system was assumed to be con-
trolled by a modified early arrival scheme in order to make the system evolves as
a Markov chain. This modification enabled us to obtain explicit expressions for
certain moments that could not be calculated explicitly in Aboul-Hassan and Ra-
bia (2002, 2003). Moreover, this feature implied a reduction in the linear program
size as well as the computation time.

The process of building up and solving the linear program was fully automated
using Mathematica. From the presented numerical examples, it appeared that
the obtained bounds are tight in the case of light loads. Increasing the load factor
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TABLE 4.3 Neighborhood traffic with equal arrival rates.

N=2 N=4
Load factor  Lower  Upper Simulation Lower Upper Simulation
0.1 0.140 0.168 0.159 0.216 0.352 0.322
0.2 0.317  0.379 0.344 0.467  0.852 0.710
0.3 0.546  0.654 0.582 0.779  1.620 1.182
0.4 0.856  1.020 0.876 1.210 2970 1.784
0.5 1.290  1.540 1.288 1.810  5.920 2.563
0.6 1.950  2.200 2.051 2.700  8.900 4.051
0.7 3.050  3.300 3.182 4.190 13.000 5.856
0.8 5.270  5.520 5.980 7.160 21.200 10.180
0.9 11.900 12.200 10.890 16.000 46.100 22.450
N=6 N=8
Load factor  Lower  Upper Simulation Lower  Upper Simulation
0.1 0.324 0.542 0.470 0.432 0.732 0.663
0.2 0.700  1.370 1.028 0.933  1.890 1.409
0.3 1.140  2.780 1.756 1.520  4.000 2.353
0.4 1.650  5.830 2.742 2200  8.530 3.623
0.5 2.370 9.750 3.987 3.000 13.000 5.381
0.6 3.540 13.400 6.031 4.440 17.800 7.954
0.7 5.460 19.400 8.904 6.840 25.900 12.540
0.8 9.290 31.800 15.910 11.600 42.400 19.920
0.9 20.700  69.200 31.850 25.900 92.200 42.970

decreases this tightness especially when the number of nodes in the network is also
increased. Moreover, if the arrival rates at different nodes are equal and customers
are uniformly routed through the network, the bounds difference approaches a
certain limit as a function of the load factor. As we mentioned before in Aboul-
Hassan and Rabia (2002, 2003), obtaining performance bounds using the present
technique is very fast compared with simulation. Hence, whenever the tightness
of bounds is acceptable, the performance bounds technique is preferable to obtain
quick estimates of performance measures.

The present work can be extended in many directions. We mention here some
of them. First, we considered here open Jackson networks. A similar analysis
can be carried out for closed networks. This problem is under investigation by
the authors. Second, we restricted the model here (and also in Aboul-Hassan
and Rabia, 2002, 2003) to the single departure case. An extension to the batch
departures case is required. Finally, adding a set of constraints to bring the
obtained bounds tight for all working loads is still an open problem.
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TABLE 4.4 Neighborhood traffic with different arrival rates.

N=2 N=4
Load factor Lower Upper Simulation Lower  Upper Simulation
0.1 0.127 0.149 0.142 0.172 0.259 0.234
0.2 0.282  0.333 0.301 0.365  0.596 0.503
0.3 0477  0.567 0.490 0.587  1.050 0.799
04 0.725  0.875 0.771 0.868 1.720 1.261
0.5 1.050 1.300 1.140 1.230 2.760 1.702
0.6 1.500 1.880 1.572 1.750  4.440 2.399
0.7 2.220 2.780 2.407 2.540 6.770 3.252
0.8 3.540  4.560 3.903 3.970 11.400 4.802
0.9 7.190  9.880 6.517 7.740  26.000 7.757
N=6 N=8
Load factor Lower Upper Simulation Lower  Upper Simulation
0.1 0.231  0.351 0.326 0.284  0.436 0.420
0.2 0.488  0.813 0.696 0.600  1.010 0.817
0.3 0.775 1.460 1.111 0.951 1.820 1.384
0.4 1.100  2.420 1.601 1.340  3.050 1.964
0.5 1.510  3.960 2.213 1.820  4.950 2.778
0.6 2.080  6.400 3.250 2.470  8.040 3.626
0.7 2.930 10.400 4.138 3.420 12.900 4.993
0.8 4.410 19.100 5.897 5.050 23.600 7.261
0.9 8.250 50.000 10.460 9.110 80.600 12.300
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