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OBJECTIVE BAYESIAN APPROACH TO STEP STRESS
ACCELERATED LIFE TESTS'

DaL Ho Kim!, Woo DoNG Leg? AND SaNG GIL KanG®

ABSTRACT

This paper considers noninformative priors for the scale parameter of
exponential distribution when the data are collected in step stress acceler-
ated life tests. We find the Jeffreys’ and reference priors for this model and
show that the reference prior satisfies first order matching criterion. Also, we
show that there exists no second order matching prior in this problem. Some
simulation results are given and we perform Bayesian analysis for proposed
priors using some data.

AMS 2000 subject classifications. Primary 62F15; Secondary 62F25.
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stress.

1. INTRODUCTION

In many reliability studies, the life tests were made under various environ-
mental conditions. But for extremely reliable units it is in general impossible to
make life tests under the usual conditions because the life times of units under
the usual conditions may tend to be large and then the testing time may be very
long. As a common approach to overcome this problem, the accelerated life tests
(ALTs) are widely used, in which samples of units are subjected to conditions of
greater stress than the usual conditions. For example, accelerated test conditions
involve higher than usual temperature, voltage, pressure, vibration, cycling rate,
load, etc., or some combination of them.
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The step stress ALT is commonly used in engineering practice. We are in-
terested in the step stress ALT wherein the stress on unfailed units is allowed to
change at preassigned times until they fail. Though there are several models that
have been commonly used on the step stress ALTs, DeGroot and Goel (1979)
proposed tampered random variables (TRV) model which the effect of changing
the stress from s; to sz (s; < s2) is to multiply the remaining life of the unit at
changing time 7 by some unknown factor @ (0 < o < 1). The proposed model is

- {X’ X<r (1.1)

Sl Tt aeX -1, X>T

DeGroot and Goel (1979) studied the Bayesian estimation of parameters and
optimal design of the model (1.1) when X is exponential distribution. They
considered two independent gamma priors for parameter estimation. Although
several Bayesian studies have been done for step stress ALTs, most of their works
were performed based on subjective conjugate prior (for example, see Pathak et
al., 1987).

The present paper focuses on developing noninformative priors for step stress
ALTs. We consider Jeffreys’ (1961) prior, which is proportional to the positive
square root of the determinant of the Fisher information matrix. In spite of its
success in one parameter problems, Jeffreys’ prior frequently runs into serious
difficulties in the presence of nuisance parameters. As an alternative, we derive
Bernardo’s (1979) reference prior. As well known, Berger and Bernardo (1989,
1992) extended Bernardo’s (1979) approach, giving a general algorithm to derive
a reference prior by splitting the parameters into several groups according to their
order of inferential importance.

On the other hand, we consider Bayesian priors such that the resulting credible
intervals for for the scale parameter of exponential distribution when the data
are collected in step stress ALTs have coverage probabilities equivalent to their
frequentist counterparts. This matching idea goes back to Welch and Peers (1963)
and Peers (1965). Interest in such priors revived with the work of Stein (1985)
and Tibshirani (1989). Among others, we may cite the work of Mukerjee and
Dey (1993), Datta and Ghosh (1995a, b, 1996), Mukerjee and Ghosh (1997).

In this paper, we derive Jeffreys’ and reference priors as well as probability
matching priors for the scale parameter when the lifetime distribution under
normal stress is exponential. Based on the orthogonal transformation in the
sense of Cox and Reid (1987), we first find the orthogonal reparametrization for
scale parameter and then find reference prior and matching prior. We show that



BAYESIAN APPROACH TO STEP STRESS 227

the proposed matching prior is the first order matching and that there exists no
second order matching for model (1.1). We also show that the joint posterior is
proper. Finally some simulation results and data analysis are given.

2. NONINFORMATIVE PRIORS

2.1. Jeffreys’ and reference priors

When the lifetime distribution under the usual condition is exponential dis-
tribution with parameter 0, the probability density function (pdf) is given by

f(z|0) = fexp(—bz), 0 <z < 00, 0 < < 0. (2.1)
Under the step stress ALTs model (1.1), the distribution function is

F(yl9), y<r
F(r+ £79), y>,

G(yl0,a) = {

1- exp(—oy)a Yy S T
1 —exp{—0(r + 7))}, y> T,

where F'(-|0) is a distribution function of pdf (2.1), and o (0 < a < 1) is called
the tampering coefficient. Then the corresponding pdf is

_ 9exp(—6y), Yy S T
9(ylf, ) = { Sexp{—0(r+ L)}, y> 1 (2:3)

Let y1,v2,...,yn are ALTs data from pdf (2.3). Then the likelihood function is

mi m2 L
L6,a) x "a™™2 exp{—@(z vi + Z Yi = T4 maT)}, (2.4)
i=1 i=1

where my and mg are the number of the untampered and tampered observations,
respectively and n = my + ma.

Usually in ALTs one wants to know the information about parameter under
normal stress level. In our ALTs model, 8 is more important than a. So we
consider the orthogonal transformation for 6.

To do this, let w3 =0 and ws =0/, w1 < ws. Then with this parametriza-
tion, the likelihood function of (w;,ws) is given by

w _ ma w me
L(wy,ws) “?(w—l) ™2 exp{-w1 (Y vi + w—f Y wi—T)+mer)}.  (2.5)
i=1 =1
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The logarithm of likelihood function (2.5) is

m1 me
Hwi,w2) x my logw; + malogwy — wy Zyi — wg Z(yz —7)—wimaT. (2.6)
i=1 i=1
We can find that the random variables m; and mg are distributed as binomial
distribution with parameters (n, P{X < 7}) and (n, P{X > 7}), respectively,
where P{X > 7} = exp(—07). So, E[mgy] = ne™%. Then the Fisher information
matrix of (w;,ws) is given by

Iy O
Hwn;wp) = ( (1)1 I22) ’

where
n
Ii1 = —{1 — exp(~w17)},
wi

n exp(—w1 7).

I, = —
w3

The Jeffreys’ prior for w1 and wy is

1/2, 0<w <wg <.

(2.7)
Due to the orthogonality of the parameters, following Datta and Ghosh (1995b)
choosing rectangular compacts for each w; and wy, when w; is of more inferential

77 (w1, we) o (wiwz) Tt {(1 — exp(—w17)) exp(—w;7)}

importance than ws, the reference prior for w; and we is given by
R -1 _ 1/2
7w, we) o (wiwz) T {(1 — exp(—w17))}7*, 0 <wy < wg < 00. (2.8)

Datta and Ghosh (1996) showed that the reference and matching prior have
invariance properties under the one to one transformed reparametrization. Hence,
the Jeffreys’ and reference prior for # and « is

77 (0, a) x (6a)™! {(1 — exp(—07)) exp(—07)}2, 0< 0 <00, 0<a<1 (2.9)
and
80, 0) o (8a)™1 {(1 - exp(—OT))}l/z, 0<f<oo, 0<acx<l, (2.10)

respectively.
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2.2. Matching priors

For a prior , let §177(m;Y) be a percentile of the posterior distribution of 8,
that is,
P <0 "(mY)Y}=1-n. (2.11)

We want to find priors which satisfy
P™{0 < 0 (m; Y)|0,a} =1 -1+ o(n~%?) (2.12)

for some u > 0, as n goes to co. Priors 7 satisfying (2.12) are called matching
priors. If w = 1, then = is called a first order matching prior, if v = 2, 7 is called
a second order matching prior.

Now, to find the matching priors «, consider the likelihood function of one
observation for convenience. The likelihood function of an observation y is

1-4
L(8, &) o< 6° exp(—65y) (g) exp{—(1 — )o(X=—L — )},

(01

where

5= Ly<rT
10, y>T.

First, we apply the orthogonal reparametrization, w; = 6 and wy = 0/ and
take the logarithm of the above likelihood function,

l{wy,ws) x logwy — w10y — 5 logwy + 5 log wo — wzél(y —-7)— wl(SlT,

where § =1 — 4.
The Fisher information matrix of (w;,wsz) per observation is given by

. in O
Z(w17w2) = ( (1)1 7:22) )

) 1
i1 = —{1 —exp(~w17)},
Wi

where

. 1
igg = —5 exp(~w1T).
w2

Notice that the transformation from (6, &) to (w1, wz) is orthogonal in the sense
of Cox and Reid (1987). Due to the work of Tibshirani (1989), the first order
probability matching priors when the parameter of interest is w; is given by

7 (w1, we) o w1 - exp(—w17)}2d(ws), (2.13)
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where d(ws) is an arbitrary function differentiable in its argument. So, the first
order matching prior for (8, @) is

7M(0,0) x a1 — exp(—07)}?g(0/ ), (2.14)

where g(-) is an arbitrary differentiable function in its arguments.

The class of prior given in (2.13) is large, and it may be necessary to narrow
down this class of priors. An alternative is to find the class of second order
probability matching priors which are given by Mukerjee and Ghosh (1997). They
showed that a second order probability matching prior is of the form (2.13), and
d(wy) must satisfy the following differential equation,

1 0 ., ._3 0 . .-1/2 )
Ed(WQ)ﬂ{(zll Ly} + a_w{ml/ L112(%%)d(wn)} = 0, (2.15)
where
3
Ligg=E [(___Bl(cgl,wz)) } ,
w1
63l(w1,w2)
= p | LX)
Iz = B s
and

-1
le ilZ _ 11 %12
@2t 22 121 122 '

Since 8%l(w1,ws)/0w?dws = 0, L112 = 0. So the second term in equation
(2.15) is 0. The only way which the prior (2.13) satisfies the second order match-
ing condition (2.15) is (il_f’/ 2)L1,1’1 is function of wo alone or constant.

Now, from the log-likelihood function, one can obtain

8l(w17 w2)

B :5w1_1—6y—57'.

Then .
1 ' 13
Ll,l,l =FK [5(0.)1_ - Y) ) T:l
= E[§(wit - Y)}] - PE[s].
Now, E[§(w]! — Y)3] can be reexpressed by conditioning on J as follows:

E[5wi'-Y)®] = E[j(wi' =Y |6 =1] P{6 =1}
+E [5(w;t = Y)?|6 = 0] P{6 = 0}
= E[(wi'-Y)|s =1 P{s=1}.
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Note that P{6 = 1} = 1 — exp(—w17). Moreover, given that an observation is
untampered (Y < 7), the distribution function of Y is, for 0 < y < 7,

Fyyy<r(y) = P{Y <ylY <7}

1 — exp{—w1y}
1—exp{—w17}’

From this result, we can calculate the conditional expectations which is included
in E[(wi* - Y)3|6 = 1] as follows:
EY|6=1] = w]' — TA(w1,7),
E[Y%6= 1] = 2072 — 72 A(wy, 7) — 21wyt A(wr, 7),
E [Y3|6 =1] = 6wi® — T3 A(wy, 7) — 3r2wl L A(wr, T) — 6TWEA(wr, T),

where A(wy,7) = exp{—w17}(1 — exp{—w;T}) . So,
E[wi'-Y)P5=1] = w® - 3w 2E[Y|6 = 1] + 3w; 'E [Y?|5 = 1]
~E[Y36=1]
= T3 A(w1,T) + 3rw 2 A(wr, T) — 2w1_3.
Hence

L1 = E[(wi' - Y)36 =1] P{§ = 1}

= 3 exp(—w1T) + 31w 2 exp(—w1T) — 2w {1 — exp(~w17)}

and

3 -3/2

wi)’ exp(—w1T){1 — exp(—w17)}
+37w; exp(—w17){1 — exp(—w17)}
—2{1 — exp(~w; 7)} V2.

—3/2
i L =7
-3/2

The above quantity is not a function of wg or constant. Therefore, there exists
no second order matching prior in our model.

Moreover, one can may interest in finding a matching prior for tampering
coeflicient a, but the general solution of partial differential equation of Tibshirani
(1989) does not exist.

The Jeffreys’ prior (2.9) does not satisfy first order matching criterion. But
if we take the arbitrary function g(6/«) in (2.14) as 8/, then the reference prior
(2.10) is in a class of first order probability matching prior.
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3. POSTERIOR ANALYSIS

Suppose that y = (y1,y2,...,¥n) is random sample from pdf (2.3). The like-
lihood function for (#,a) is (2.4). For the parameters (8, «), we consider the
general form of prior such as

i) (8, @) o 077 {1 — exp(—07)}¥/2 {exp(~07)}/2, (3.1)

where 0 < 6 < oo and 0 < & < 1. Note that 7(g 21 0)(0, @) equals to the matching
prior (2.14), and m(; 1,1,1)(6, @) equals to Jeffreys’ prior (2.9) and m(111,0)(6, @)
equals to reference prior (2.10).

Using the prior (3.1) and the likelihood function (2.4), one can find the joint
posterior distribution of # and « as follows:

(0, aly) o< L(6, a)m(; j k1) (0, @) (3.2)
o 8" o ™27 exp{—f(maT +v) — gw}
x (1 — exp{—07})*/?(exp{—67})"/2,

where v = 37 y; and w = 3372 (y; — 7).
We first show the propriety of joint posterior for the prior (3.1).

THEOREM 3.1. The joint posterior distribution of 8 and « is proper if n —
me—i—7j+2>0andma+7—-1>0.

PrROOF. One can integrate the joint posterior given in (3.2) with respect to
# and « as follows:

oo pl
/ / m(6, aly)dadd
o Jo

= / g exp{—0(mat + v + %)}{1 — exp(—t%)}k/2
0
1 ) 9
X / a "7 exp{——w}dads.
0 «

Since, if mg + 37— 1> 0, then

1 ; 0 F(ma+375-1)
—ma—j _Z _-\rterJ -2
/0 o exp{ aw}da (BT

the integration of joint posterior is reduced to

Pma+3—1) [ imma—in1 ! k/2
w—m2+j:1—/0 4 2 exp{—0(mar +v + ;)}{1 — exp(—87)}*/*d#.
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By the fact that 0 < {1 — exp(—67)}*/2 < 1, the integration is bounded by
Fmg+7—1) [ . i l
—(w—mz—_g_l—) /0 g2 g+l exp{—@(mQT +v+ Z)}dﬁ
The above quantity is always finite if n — ¢ — mg — 7+ 2 > 0. This completes the
proof. O

Note that the conditions n — my > ¢+ j —2 and ma + j — 1 > 0 are not
a rigid condition. Since in our model, ¢ + j = 2 and 7 = 1,2 the conditions
reduces to n — mg = my > 0 and mg > 0. This means that the posterior is finite
if one observes at least one observation in normal condition and in accelerated
condition.

Next we deals with the marginal posterior, distribution function and Bayes
estimate of # and «. Under the prior (3.1),if n —mg > i+ j—1 and k,1 > 0,
then we have the following results.

The marginal posteriors of § and « are given by

m(Bly) = o™ ™2~ It exp{—B(mor + v + T(—;—))} (3.3)
(1- exp{—HT})k/2
X C: ,

where

w .
Cy = / gntm2=It exp{—0(maT + v + r(é))} x {1 — exp(—67)}*/2d8
0

and
m(aly) = wm2ti—lg~m2=I (3.4)
X / 6" exp{—0(maT + v + T(i)) - gw}
0 2 (81
y {1 — exp(—67)}*/2d6
[[(mz +j—1)Ci] ’
respectively.

The marginal posterior distribution functions of # and « are given by
Fy(Bly) = gnimmei+2 (3.5)

x/ooyn_i—mz—j+l(1+y)—(n—i—m2—j+3)
0

z
x exp{——0£—;(m2’r +v+7(3))}

9 {1- exp(—HHLy'r)}kﬂdy
&
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and
Fylaly) = / grimme—i+l exp{—0(mar + v + 7‘(%))} (3.6)
0
x{1— exp(—GT)}k/2
0 ) do
X [l - IG (Ew,mz +7— 1)] o

where IG(a,b) = [7°{1/T'(b)}s"te~*ds. respectively.
The Bayes estimates of § and « under quadratic loss function are given by

g = / g7t mm2 =2 exp{—0(maT 4+ v + T(é))} (3.7
0
x{1 - exp(—GT)}kﬂfi—Q
Ch
and
~ w
T mati-2 (3.8)
X / gntm2 I 2 exp{—O(mar + v + T(%))}
0
x{1 - exp(—97)}k/2ﬁ,
C1
respectively.

4. NUMERICAL RESULTS

In this Section, we will show some simulation results and numerical example
based on artificial data set.

4.1. Simulation studies

Although probability matching can be justified only asymptotically, our sim-
ulation results might indicate that this is indeed achieved for small or moderate
sample sizes as well. So we compute the frequentist coverage probabilities for the
priors, (2.14), (2.9) and (2.10) when 7 is small and moderate.

Let 87(m;Y) be the posterior y-quantile of 6 given Y under the prior 7. So,
(0,67(m;Y)) is the one-sided y posterior confidence interval. Let Qg q)(v;8) be
a frequentist coverage probability of this posterior confidence interval

Q(G,a)('ﬂ 6)=P{0<8< 07 (m;Y)} = 7.
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Similarly, we can define o”(7;Y) and Q(p,«)(7; @) to be the posterior v quantile of
a and the corresponding frequentist coverage probability, respectively. In Table
4.1, the estimated Qg )(7;0) and Qg 4)(7; @) are shown, when v = 0.05(0.95).
To obtain the table, we generate 10,000 independent random samples for fixed
6, 7 and « from pdf (2.3). Note that under the prior 7 and given Y, the event
6 < 67(m;Y) is equivalent to the event Fp(6”(m; Y)|Y) < 4. So, we calculate the

relative frequency of Fy(07(m;Y)|Y) <.
From the Table 4.1, we can find the fact that

1. the matching prior m(g 91 oy and reference prior m(y 1 1,0y achieve the target
coverage probability for 8 relatively well,

2. as we expected for parameter «, the three proposed priors can not achieve

the coverage probability. The reference prior m(; ;1 0) meets the coverage
probability better than any other priors.

Conclusively, we recommend the reference prior 7 ; ; oy for this step stress ALTs

model.

TABLE 4.1 Frequentist coverage probabilities for 0 and «

sample size (0,2,1,0) T(1,1,1,1) (1,1,1,0)

n 0.05 0.95 0.05 0.95 0.05 0.95
5 0.0250 1.0000 { 0.0035 0.9904 | 0.0250 1.0000
10 0.0549 0.9420 | 0.0355 0.9404 | 0.0549 0.9420

0 15 0.0521 0.9442 | 0.0392 0.9390 | 0.0521 0.9442
20 0.0507 0.9451 | 0.0402 0.9375 | 0.0507 0.9451
25 0.0538 0.9515 | 0.0411 0.9436 | 0.0538 0.9515
30 0.0533 0.9517 | 0.0424 0.9442 | 0.0533 0.9517
5 0.0093 0.8529 | 0.0226 0.9306 | 0.0347 0.9453
10 0.0178 0.8796 | 0.0309 0.9204 | 0.0416 0.9326

[ 15 0.0209 0.8941 | 0.0333 0.9219 | 0.0409 0.9332
20 0.0249 0.9092 | 0.0362 0.9303 | 0.0425 0.9379
25 0.0252 0.9180 | 0.0357 0.9371 | 0.0420 0.9452
30 0.0282 0.9143 | 0.0379 0.9317 | 0.0448 0.9385

4.2. Example

The following artificial data of size 15 are random sample from exponential
distribution with § = 2, o = 0.5 and tampering coefficient 7 = —log(0.5)/6. 7 is
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the point which a half of 15 sample is tampered and a half is not. The values are

0.553* 0.022 0.093 0.288 0.392* 0.852* 0.512* 0.725*
0.955* 0.227 0.869* 0.373* 0.401* 0.140 0.113

and the starred observations are tampered observation.

From the above sample, various point estimates of # and « are calculated in
Table 4.2. The marginal posterior probability density functions of § and « are
described in Figure 4.1 and Figure 4.2, respectively.

TABLE 4.2 Point estimates of parameters from artificial data

MLE Bayes estimator
7(1,1,1,1)  7(1,1,1,0)

0 | 1.498 1.527 1.592

0.419 0.480 0.501

In this example, the Bayes estimate under reference prior m(; 1 1,0) gives better
estimate than ML and Bayes estimate under Jeffreys’ prior 7(11,1,1)-

06
]

Jeffrey's
reference

marginal posterior pdf
04

02

0.0

<

FIGURE 4.1 Marginal posterior distribution of 6.
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"""" reference
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1 ]

0.2
1

0.0

alpha

FIGURE 4.2 Marginal posterior distribution of .
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