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Abstract

In a strictly two-sided, commutative biquantale, we study the relationships between the categories of Hutton (L, ®)-
uniform spaces and (L, ®)-uniform spaces. We investigate the properties of them.
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1. Introduction

Recently, Gutiérrez Garcia and his colleagues [1] in-
troduced L-valued Hutton unifomity where a quadruple
(L, <,®, ) is defined by a GL-monoid (L, *) dominated
by ®, a cl-quasi-monoid (L, <,®). Kubiak and his col-
leagues [10] studied the relationships between the cate-
gories of I(L)-uniform spaces and L-uniform spaces. Kim
and his colleagues [7], as a somewhat different aspect in
[1], introduced the notion of Hutton (L, ®)-uniformities
as a view point of the approach using uniform operators
defined by Rodabaugh [13] and (L, ®)-uniformities in a
sense Lowen [11] and Hohle [12] based on powersets of
the form LX*X,

In this paper, we show that the category HUnif of all
Hutton (L, ®)-uniform spaces and H-uniformly contin-
uous maps and the category Unif of all (L, ®)-uniform
spaces and uniformly continuous maps are isomorphic.
Moreover, we define the subspaces of them.

2. Preliminaries

Definition 2.1. [3,4,7,8,12] A triple (L, <,®) is called
a strictly two-sided, commutative biquantale (stsc-
biquantale, for short) iff it satisfies the following proper-
ties:

(LD L = (L,<,V,A,T,1)is a completely distribu-
tive lattice where T is the universal upper bound and L is
the universal lower bound;

(L2) (L, ®) is a commutative semigroup;
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L3)a=a@® T, foreacha € L;
(L4) @ is distributive over arbitrary joins, i.e.

(\ a)ob=\/(a0b).

el icl

(L5) © is distributive over arbitrary meets, i.e.

(/\ai)Qb: /\(ain).

il el
Remark 2.2. [3,4,78,12] Let (L,<,®) be a stsc-
biquantale. For each z,y € L, we define

x—>y:\/{z€L|m®z§y}.

Then it satisfies Galois correspondence, that is,
(zoy) <ziffz < (y — 2).

In this paper, we always assume that (L, <,®,* )} is a
stsc-biquantale with strong negation * where ¢* = a — 0
unless otherwise specified.

Let X be a nonempty set. All algebraic operations on L
can be extended pointwisely to the set L as follows: for
alz € X, f,ge LX, A€ LX anda € L,

(D) f < giff fz) < g(=);

@) (f © 9)(x) = f(x) © g(a);

B lx(z)=T, aGlx(z)=c«aandly(z)=1;

@ (o = N(z) = a — AMz)and (A — a)(z) =
Az) = a;

5) (@@ M) (z) = a0 Ax).

Definition 2.3. [7] Let (X)) be a subset of (LX)(X™) such
that
(O1) A < ¢(N), forevery A € LX,
(02) ¢(Vz‘er Ai) = Vier ¢(M), for {Ai}ier € LK,
(03) a © ¢(A) = ¢p(a® ), for A € LY.



Lemma 2.4. [7] For ¢, ¢1, 92 € Q(X), we define, for all
e LX,

(N = Np e L¥ [ 6(p") < A},
P10 Pa(A) = dp1(d2(N)),

Q@ da(A) = /\{¢1(/\1) © d2(A2) | A = A1 © A2}

For ¢1, @2, ¢3 € Q(X), the following properties hold:

(D) If ¢(14zy) = pg foral z € X, then o(A) =
V.ex A=) © ps.

() If d1(1z)) = d2(lyyy) for all z € X, then
1 = ¢2.

B3l e QUX), (¢~ 1)t = ¢and ¢ 0 ¢y € QX).

(4)If ¢1 < ¢a, then ¢ < 5.

(5) 1 @ ¢ € QX).

(6) ¢1 ® ¢p2 < ¢1 and @1 ® P2 < 2.

(7) (61 @ ¢2) ® ¢3 = ¢1 ® (¢2 @ P3).

(8) (41 ® ¢2) 0 ($1 ® h2) < (d10 1) ® (d2 0 P2).

(9) Define ¢7 € Q(X) as ¢7(ley) = 1x, Vo € X.
Then ¢ < ¢ forall ¢ € Q(X).

Definition 2.5. [7] A nonempty subset U of Q(X) is called
a Hutton (L, ®)-quasi-uniformity on X if it satisfies the
following conditions:

(QUD If ¢ < o with ¢ € U and ¢ € Q(X), then
Y e U.

(QU2) Foreach ¢,v € U, ¢ @y € U.

(QU3) For each ¢ € U, there exists 1y € U such that
Wou < 6.
The pair (X,U) is said to be a Hutton (L, ®)- quasi-
uniform space.

A Hutton (L, ®)- quasi-uniform space is said to be a
Hutton (L, ®)-uniform space if it satisfies

(U) For each ¢ € U, there exists ¢! € U.

Definition 2.6. (7] Let E(X x X) = {u € LX*X |
u(z,2) = 1} be a subset of LX*X. A nonempty subset
D of E(X x X)is called an (L, ©)-quasi-uniformity on X
if it satisfies the following conditions:

QDD Hu < vwithuy € Dandv € E(X x X), then
v € D.

(QD2) For each u,v € D,u © v € D.

(QD3) For each u € D, there exists v € D such that
vowv < u where

vou(z,y) = \/ (v(z,2) ©v(z,y)).
ze€X
The pair (X, D) is said to be an (L,®)- quasi-uniform
space.
An (L, ®)-quasi-uniform space is said to be an (L, ®)-
uniform space if it satisfies
(D) For each v & D, there exists ©u° € U where

u®(z,y) = u(y,z).

Categories of two types uniform spaces

Definition 2.7. [7] A function « : X x X — L is called an
O-quasi-equivalence relation iff it satisfies the following
properties

(ED u(z,z) =1forallz € X.

(E2) w(z,y) @ u(y, 2) < u(z,2).

An (©-quasi-equivalence relation is called an ©-
equivalence relation on X if it satisfies

(B) u(z,y) = uly, z).

We denote 42 = v ® u and vt = 4™ ©® u for each
we LX*X,

Theorem 2.8. [7]Letu : X x X — L be an ®-equivalence
relation. We define a mapping D, as follows:

D,={ve B(X xX)|3Ine N,u" <v}.

Then D, is an (L, ®)-uniformity on X.

Theorem 2.9. [7] We define a mapping ' : E(X x X) —
(X)) as follows:

LM (y) =\ A@) ©ulz,y).

reX

Then we have the following properties:
(1) Foru € F(X x X),'(u) € Q(X) and I'(«) has a
right adjoint mapping I'(u)* defined by

D)=\ = V{p e LY | T(w)(p) < A}.

(2) T is injective and join preserving.
(3) T has a right adjoint mapping A : Q(X) — E(X x
X) as follows:

| A(@) (z,y) = o(1(z})(y)-
@ToA=1gxyand AoT = E(X x X).

Theorem 2.10. [7] Let w,uy,us € E(X x X). Then we
have the following properties:

(D Ifug < ug, T(uy) < Tlug).

(2) T{uy © uz) < I'(up) @ Tluz).

A TAa)=1px.

@ D(w)~ =T(u®).

) T(w)™* (A — 1) =
AeL¥,

(6) T'(ug o ug) = I'(uz) o T'(u1).

(M (adu)=a0T(u).

(8) If u is an ®-equivalence relation on X, then

iu)y~(A) — L, for all

(D(w))~* = D(u*) = D(u), T(w)oD(u) = T(u).
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Theorem 2.11. [7]Letu : X x X — L bean
(®-equivalence relation. We define a mapping U, as fol-
lows:

U, = {6 € Q(X) | 3n € N, T(") < ¢}.

Then U, is a Hutton (L, ®)-uniformity on X.

Theorem 2.12. [7] Let ¢, 1, ¢ € QX
the following properties:
(1) If ¢1 < ¢o, then A1) < A(d2).
(2) A(h1) © A(¢2) = A(d1 ® b2).
B)A(lpx) = 1a.
@) A(¢)° = A(¢™H).
(
(

). Then we have

(5) A(¢1) o A(¢2) = A¢2 0 ¢n).
6) Al © ¢) = a O A(d).
NI pod = ¢pand ¢ = ¢~ 1, then A(¢) is an &-

equivalence relation.

Theorem 2.13. [7] Let D be an (L, ®)-uniform space. We
define a mapping Up C Q(X) as follows:

Up ={¢ € Q(X) | Fu e D,I'(v) < ¢}

Then Up is a Hutton (L, ®)- uniformity on X.

Theorem 2.14. [7] Let U be a Hutton (L, ®)-uniformity
on X. We define a mapping Dy C E(X x X) as follows:

Dy={uc E(X xX)|3¢ € U A($) <u}.

Then:
(1) Dy is an (L, ©®)-uniformity on X.
(2) Dy, =D and Up, = U.

3. Properties of two types of uniform spaces

Let f : X — Y be a function. We define the image and
preimage operators

J7 @O - @),

Fe (Ly)(LY) - (LX)(LX)

such that for each ¢ € (LX)&™) and ¢ € (LY)E") for
all i, i1, po € LX, p1,pp € LY,

fZ@)p) = (f" oo fT)(p)
FE@) ) = (F" oo f7)(u) =

= 76~ (o)),
F@ (™ W)
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Lemma 3.1. For each 9,911,192 € QYY) and ¢1,¢2 €
Q(X), we have the following properties.

(1) The pair (f=, f<) is a Galois connection; i.e.,
f7 A

@) [~ (1 O p2) < f7(p1) © F (u2
if f is injective and f (p1 © p2) = [ (p1

3) f=() € Qx.

(4) If opy < 4y, then f<(3h1) < f< (o).

(5) (1) o f<(32) < (1 01h2) with equality if
f is onto.

© (fE@W) ' =) e Qx.

D fEW1) 0 f(¢2) = [T (1 O2) and 7 (1) ©
7 (82) 2 7 (¢1 © ¢2).

LX(S) @)™ ) < ¢~

) with equality

) © f(p2)-

(™ (), for all €

Proof. (1) We prove the following statements:

r=(~w)w = ()

“E)))

(W)
P W
().

Similarly, f= (f<(#))(p) < ¢(p). Thus, f= = f<.
(2-5) can be easily proved.
(6) Suppose there exists € L~ such that

(FE@NTH W) £ S W),

By the definition of f<(y~")(n) = f— (¥~ (f~(w)),
there exists p € LY with ¢(p*) < (f~(p))* such that

(SE@N ) £ £ ()

v I

On the other hand, since

YT 0)) = (I (07)) < 9(p)

Fm@ ) < FF W) = ()" <w

we have fT@W(f7(f7(") < p' So
(Ff@)"Yw) £ f=(p). It is a contradiction. Thus,

(fEW)™ < fE@Y). It implies (f<(p~")) 7" <
fE@). So, f<(™h) < (f=(¥))~'. From (3) and
Lemma 24 (3,4), (f< ()~ = f<(v™!) € QX).

(7) Suppose there exist u € L~ and x € X such that

(£ @) © 17(W2) ) (W) £ £ (1 © 2) (1))

= 7 (1 0 %2) (7 (1) (¥())-

Then there exist v; € LY with f~ () = vy ® vq such that

(F@)0r =(2) ) (@) £ ¥1(01) (F(@))Ovs (1) (f (=)



Since 41 < f7(f7 (1) = £~ (1) © F= (1) from (2), we
have

(fcwl) O £=(4)) (1)
< (F=@0) © £=@2))(F~ () @ £~ ()

FEW@ (1)) © F< (b)) (F (12))
I~ (1)) © £~ W (F~ (£ ()
T (W1(11)) © f (¢ (r2)).

Thus, (f=(1) © £(42)) ()(@) < () (F(2) ©
Ya(v2)(f(x)). It is a contradiction. Hence <) ©
FE(W2) < f=(W1 O ).

Suppose there exist p € LX and z € X such that
(F=@n) © £ () (0)(@) £ 7= O ia) () )

= (W1 O ¥2)(f7(0)(f ().
Then there exist p; € LX with p = p; © p2 such that

(=) © 1=w2)(2)) ()

= (7 (p))(f(2)) © @2~ (p2))(f(2))
Z 1< ©¥2)(0)(2)

Since f7(p) < f7(p1) ® £~ (p2) from (2),

T © 92)(p)(z)
= (1 O Ya)(f~ () (f(z))
< W1 0v)(f~(p1) © £ (p2))(f(2))

= (10057 (1) © (s (02))) (F2)).

IN D IAIA

It is a contradiction. Thus
FEW) © FE(2) > £ (101 O ).
We will show f= (1) © = (h2) > F=(d1 © ¢3) from:

= (61) © 17 (62)(n)
= AT (D) (1) © FZ(62)(12) | o= iy © o}
= AT (6 (f (1)) © F (b2(F (12))) |

B= 11 O ug}

> N~ (¢1(f“(u1)) © ¢a(f~ (n2))) |
F ) = £ (1) © 1= (n2)}

> £~ (Mo (F=(m)) @qsz(fwz)) |
=) = £ ) @ £ (a)})

2 f7{d1 © g2)(f ().
(8) From (6), we have for all i € LX,

F(F= @)=Y w)

=< H(w) by (©)

=@ W)
L (w).

Categories of two types uniform spaces

Example 3.2. Let X = {a,b,c} and Y = {z,y} be sets
and L = [0, 1] an unit interval. Define a binary operation
® (called Eukasiewicz conjection) on [0, 1] by

r©y=max{0,z +y—1}.

Then ([0, 1], v, ®,0, 1) is a stsc-biquantale (ref.[2-4]). Let
v €D, ] as follows:

u(a) = 0.7, u(b) = 0.5, u(c) = 0.8,
v(a) = 0.6,v(b) = 0.9,v(c) = 0.7.

Then (uOv)(a) = 0.3, (uoOV)(b) = 0.4, (uGV)(c) = 0.5.

Let f : X — Y be a function by f(a) = f(b) =
2, f(¢) = y. Then f~(p)(z) = 0.7, f~ (1) (y) = 0.8
and f~(v)(z) = 0.9, f~ (v)(y) = 0.7. Thus, (f (1) ©
[7@)(z) = 06 and (f~(u) © f~(@)(y) = 0.5.
But f7(u ©v)(z) = 04, f~ (1 ® v)(y) = 0.5. Hence
f7(w®v) # f7 (1) © £~ (v) because f is not injective.

Lemma 3.3. Let f : X — Y be a function. For each
v,v1,v2 € E(Y xY), ¢ € Q(Y) and A € LX, we have:
(M) fEI(w) = fToT(w) o f~ =T((f x £)~(v)).
@) (f X [)~(A(9)) = A(f=(8)).
G L((f x )7 (%)) = T(((f x £)~(v))*) = T((f x
HTw)~h
@) (Fx ) (n10v2) = (Fx )= (01)O(f x ) (v2).
S) (fx f)yT(w) o (f x f)~(v) < (f x £)~(vou).
(6) If v is an ®-equivalence relation on Y, then (f x
f) 7 (v) is an ®-equivalence relation on X.

Proof. (1) It is proved from:

FET )M ()

=f7ol(v) o f=(N)(x)
=T@)(f~)(f(z))

= Vyer {7 (N (y) @ vly, f(z))}

= Veex {17 N(F(2) ©v(£(2), f(z))}
= \/zeX{)‘(z) © (f X f)h(v)(zﬁv)}

=T((f x £)~ () (M\)(=z).
2)

AN y) = (@) (1) (y)
=&/~ Q1))
= d(lir)1)(f(¥))
= (f x /Y7 (A(@))(,y).

(3)

L % )™ () () (A)(z)

((f x )= @)\

Viyex {AW) © (f x £)=(v*)(y,2))}
Vyex {My) © v (f(y), f(z))}
Vyex{AMu) © (f x /)= (v)(z,y)}
Vyex {2®) © ((f x /)= ())*(y, )}
L(F > = @) ()

L T T I I |
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Furthermore, by Lemma 2.10(4), T'(((f x f)*
L((f x £)= ()™

(4) It is easily proved.

&)

(f x [y~ (w) o (f x )~ (v)(z1,22)

= Veex(F x )7 ()(@1,2) © (f x f)~
= V.ex v(f(z1), f(2)) O v(f(2), f(22))
<Vyey v(f(21),y) © vly, f(z2))

= vou(f(zy), f(z2))
= (f x )" (wov)(z1,z2).

(6) We have to check the axioms of Definition 2.7.

f@) =1
(v) < (F X N)~(wov) =

(v))*.

(v))°) =

(v)(2,22)

=)z, z) = v(f(z),
ORIV

=((fxH~

Example 3.4. Let X = {a,b,¢,d},Y = {z,y, 2} be sets
and ([0, 1], ®) a biquantale defined by z ®y = max{0,z+
y — 1}. Define a function f : X — Y as follows:

fla) = f(b) =z, f(b) =y, f(d) =z
Letv € E(Y x Y) be defined as
v(z,2) = v(z,y) =1,
v(y,z) = 0.7, v(y,z) =uv(zy) =06,
w(z,2) = v(z,z) = 0.5,

v(z,z) = v(y,y) =

Then

F(U)(l{z}) = pz, pu(@) = 1,p2(y) =1, pz(2) = 0.5,
Fu)(Agy}) = py, py(2) =0.7,py(y) = 1, py(2) = 0.6,
P(u)(l{z}) = pz, pz(z) = 0.5,p.(y) = 0.6,p.(2) = 1.
Furthermore,

FE@)Aay) = FE TN Ay = f~(pa),

FE@)e) = (py), fTE0)(Agy) =
Since

L((f x )~ (v)(1{ay)
= Vaeex Hay (@) O (f x )~ (v)(z, )
= (f x ) ()(a, =) =v(@, f(-)) = F(pa),

by a similar method, T'((f x f)"(v))(1a3) =
foT())(1{qy) for all @ € X. By Lemma 2.4(2),
T((f x )~ @) = =T ().
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F(p2)-

Definition 3.5. (1) Let (X,U;) and (Y, Us,) be Hutton
(L, ®)-uniform spaces. A function f : (X,U;) —
(Y, Us) is H-uniformly continuous if f<(y) € U,, for
every ¢ € Us.

(2) Let (X, D4) and (Y, D3) be (L, ®)-uniform spaces.
A function f : (X,D1) — (Y, Dy) is uniformly continu-
ous if (f x f)~(v) € Dy, for every v € Ds.

Theorem 3.6. (1) Let (X,U;), (Y,Us3) and (Z,Us) be
Hutton (L, ®)-uniform spaces. If f : (X, U;) — (Y, Uz)

and g : (Y,U,) — (Z,Us) are H-uniformly continuous,
then go f : (X,U;y) — (Y, Usz) is H-uniformly continu-
ous.

(2) Let (X,Dl), (Y,DQ) and (Z,D3) be (L,@)-
uniform spaces. If f : (X,Dq) — (Y,D3) and g :
(Y,D3) — (Z,D3) are uniformly continuous, then g o f :
(X,Dy) — (Y, Dyg) is uniformly continuous.

Proof. (1) Since f<(g=(¢)) = (g o f)<(¢) for each
1 € Us, it is easily proved.
(2) For each v € D3, ({(go f) x (go f))(v) =
(f x f)=((g x g)~(v)) € D1.
O

Theorem 3.7. Let (X, D) and (Y, D3) be (L, ®)-uniform
spaces. If f : (X, D4) — (Y, Dy) is uniformly continuous,
then f : (X,Up,) — (Y, Up,) is H-uniformly continu-

ous.
Proof. For each 1y € Up,, there exists v € Dy with

T'(v) < 4. Since f is uniformly continuous, for v € Do,
(f x f)~(v) € D;. By Lemma 3.3(1), since

L((f x )~ (v) =

we have f<(¢) € Up,.

FE@) < f5(9)

Theorem 3.8. Let (X, U;) and (Y, Us) be Hutton (L, ®)-
uniform spaces.

(1) A function f : (X, U;p) —
continuous iff f : (X,Dy,) —
continuous.

(2) In Theorem 3.7, f : (X,Dy) —
formly continuous iff f : (X,Up,) —
uniformly continuous.

(Y, Usy) is H-uniformly
(Y,Dy,) is uniformly

(Y,D3) is uni-
(Y,Up,) is H-



Proof. (1) For each v € Duy,, there exists v € Ujy
with A(¢) < v. Since f is H-uniformly continuous, for
¥ € Us, f<(¥) € Uy. By Lemma 3.3(2), since

(f x /)7 (A(8) = A(f=(@) < (f x /)™ (v)

we have (f x f)~ (v) € Dy,.
Conversely, since (U;)p,,, = U, for i = 1,2 from
Theorem 2.14, it is easily proved.
(2) Since (D;)up,, = D; for i = 1,2 from Theorem
2.14, it is easily proved.
O

The class of all Hutton (L, ®)-uniform spaces and H-
uniformly continuous maps forms a category, which is de-
noted by HUnif.

Moreover, the class of all (L, ®)-uniform spaces and
uniformly continuous maps forms a category, which is de-
noted by Unif.

Theorem 3.9. Define maps £ : HUnif — Unif and
G : Unif — HUnif by F(X,U) = (X,Dy), F(f) = f
and G(X,D) = (X,Up),G(g) = g, respectively. Then
F and G are functors and HUnif and Unif are isomorphic.

Proof. By Theorems 3.6-8, F' and G are functors. From
Theorem 2.14, FoG(X,D) = (X, D) and Go F(X,U) =
(X, U). So, HUnif and Unif are isomorphic.

O

Theorem 3.10. Let (Y, U) be a Hutton (L, ®)-uniform
space, X a setand f: X — Y a function. Define a sub-
set U7 of Q(X) as follows:

U/ ={peQX)|IeU, f~@®) <o}

Then we have the following properties.

(1) The structure U/ is the coarsest Hutton (L, ®)-
uniformity on X for which each f is H-uniformly contin-
uous.

(2) A map g:(Z,U;) — (X,Uf) is H-uniformly
continuous iff f o g : (Z,U;) — (Y,U) is H-uniformly
continuous.

Proof. (1) First, we will show that U/ is a Hutton (L, ®)-
uniformity on X.

(QU1) Obvious. (QU2) If ¢1,¢, € UY, there ex-
ists ¥; € U with f<(¢);) < ¢; fori = 1,2. Since
@) ® fS(W2) = f(11 @ ¢¥2) < ¢1 ® ¢ from
Lemma 3.1(7), we have ¢, ® ¢o € U/,

(QU3) For each ¢ € U/, there exists v € U with
@) < ¢;. Fory € U, since (Y,U) is a Hutton
(L, ®)-uniform space, by (QU3), there exists v € U with
v oy < 1. By Lemma 3.1(5), since

@) o fS() S fS(voy) < W) < ¢,

Categories of two types uniform spaces

then f<(v) € UZ.

(U) For each ¢ € U, there exists ¥ € U with
=) < ¢. Fory € U, since (Y, U) is a Hutton (L, ®)-
uniform space, by (U), there exists 1~ ! € U. By Lemma
3.1(6), we have

FE@™) =@ <ot

Thus, ¢~ ' € Uf

Second, by definition of Uf, f<(y) ¢ U/, for all
¥ € U. Hence f : (X,Uf) — (Y,U) is H-uniformly
continuous.

Finally, let f : (X,U;) — (Y,U) be H-uniformly
continuous. For each ¢ € U/, there exists 1 € U with
() < é. Since f<(3p) € Uy, then ¢ € U;. Hence
u/ C Uj.

(2) Necessity of the composition condition is clear
since the composition of I -uniformly continuous maps is
H-uniformly continuous.

If ¢ € U7, there exists ¢ € U such that f<(z)) < ¢.
Since f o g is H-uniformly continuous, for ¢ € U,

(fog)T(@W)=gT o fT(¥) €Uy

Since g<(¢) > g€ o fT(¥) € Uy, we have g<(¢) €
U,. O

Theorem 3.11. Let (Y, D) be an (L, ®)-uniform space, X
asetand f : X — Y a function. Define a subset D of
E(X x X) as follows:

D/ ={uec E(X xX)|IeU, (fxf)"(v)<u}.

Then we have the following properties.

(1) The structure D/ is the coarsest (L, ®)-uniformity
on X for which each f is uniformly continuous.

(2) g:(Z,D1) — (X, D) is uniformly continuous iff
fog:(Z,D;) — (Y,D) is uniformly continuous.

(3) Ups = Up’.

(4) If (Y, U) be a Hutton (L, ®)-uniform space, then
Dy; =Dy’.

Proof. (1) and (2) are similarly proved as in Theorem 3.10.

(3) If ¢ € Upy, there exists u € D¥ with T'(u) < ¢.
Since u € D/, there exists v € D such that (f x f)(v) <
4. So, v € D implies I'(v) € Up. Since f<(T'(v)) =
T((f x £~ (v)) < I'(u) < ¢ from Lemma 3.3(1), we
have ¢ € Up’. Hence Ups C Up’.

If ¢ € Up?, there exists ¢y € Up with f= (1) < ¢.
Since ¢ € Up, there exists v € D such that I'(v) < 1 and
(f x f)~(v) € Df. Since

T x )7 W) = fETW) < fT0W) < ¢,
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we have ¢ € Upy. Hence Up; D Up’.

(4) If u € Dy, there exists v € Dy with (f x
FY~(v) < u. Since v € Dy, there exists 1 € U such that
A(yp) < v. It follows f<(p) € U/. By Lemma 3.3(2),
since A(f<(¥)) = (F x f)=(A(W) < (f x f)~(v) <,

we have u € Dyys. Hence Dyyr D Dy’.

If u € Dyy, there exists ¢ € US with A(¢) < w.
Since ¢ € U/, there exists 1 € U such that f<(¢) < ¢.
Since A(y) € Dy and

(fx HTAW) = A(fT@)) < A(¢) < u
we have u € DUf. Hence Dyr C DUf.
: U

Theorem 3.12. Letw : Y X Y — L be an ®-equivalence
relation and f : X — Y a function. Then Uy = UIwa is
defined as follows:

Up; = {6 €QX)|3ne N, (T w") < ¢}.

Proof. From Theorems 2.8 and 2.11, we obtain
D,={veE(Y xY)|3Ine N,uw" <uv},
Up, ={¢ € Q(Y) | 3In € N,T(w") < ¢}.

Since (f x ) (v) is an (O-equivalence relation on X from
Lemma 3.3(6), we obtain

DI ={ueBE(XxX)|3neN,(fx f)~ )" <u}.

Since T((f x /Yy~ (w)*) = T((f x i (w) =
f=(T(w™)) from Lemma 3.3(1) , we have

Upy = {6 € X) | 3n € N, F= (™) < ¢}.

Example 3.13. Let X,Y, f and (L = [0, 1], ®) be defined
as in Example 3.4. Letw € F(Y xY') be an ®-equivalence
relation on X as

w(z,z) = w(y,y) = w(z,2) = w(z,y) = wly,z) = 1,
w(y, 2) = w(z,y) = 0.6, w(z, 2) = w(z,z) = 0.5.
Then
=w’(y,y) = w’(22)
=w(z,y) = w’(y,z) = 1,
wi(y, z) = w(z,y) = w’(z,2) = w'(z,

We obtain D,,, Up,,, D{ and Uwa

w(z, )

z)=0.
=U, s as follows:
D, ={weEYxY)|w <v}

Up, ={yeQ(Y)|T(w®) <y}
Df ={u€ EX xX) | ((f x /)~ (w))* < u}

UL =Up, ={¢€QX) | F=(T(w?) < ¢}.
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From Theorems 3.9 and 3.10, we can define subspaces
in the obvious way.

Definition 3.14. Let A be asubsetof X andi: A — X an
inclusion function.

(1) Let (X,U) be a Hutton (L,®)-uniform space.
The pair (A, Uy4) where Uy = {¢ € Q(A) | I €
U, i) < ¢} is said to be a subspace of (X, U).

(2) Let (X, D) be an (L, ®)-uniform space. The pair
(A,Dy)where Dy = {u € E(Ax A) | v eD, (ix
1) (v) < u} is said to be a subspace of (X, D).

Example 3.15. Let XY, f and (L
as in Example 3.4.
(1) Define ¢ € (Y") as follows:

= [0, 1], ®) be defined

¢(Lizy) = d(1gyy) = Lizyy, 0(1gzy) = 0(112y)
Since
¢@¢(1(a}) = 0@ d(1yyy) = Loy} 0@ D(15y) =14y,

by Lemma 2.4(2), ¢ ® ¢ = ¢. We have ¢ o ¢ = ¢ because
Pod(lizy) = pod(lyy) = Lawy, 0 d((1¢21)) = 1423

Since

¢ (Lay) = 07 (1gyy) = Tap ' (Ley) = Loy

Hence ¢7' = ¢. Define U = {yp € Q(X) | ¢ < ¥}
Then U is a Hutton (L, ®)-uniformity on X. We obtain
Dy={ve E(XxX)|A(¢) <v}. Since po¢ = ¢ and
¢~ = ¢, by Theorem 2.12(7), A(¢) is an ®-equivalence
relation such that

A@)(z,y) = d(12)) (W) = Ly (¥) =1,
M)z z) =1, AM(¢)(z,2) =0
APy, 2) =1, Ad)(y,9) =1, A(@)(y,2) =0
A(@)(z,2) = 0, M¢)(z,y) =0, A(d)(z,2) =1
Furthermore, A(¢) o A(¢) = A(d), A(¢™}) = A(¢)° =
A(¢) and A(¢) © A(¢) = A(¢ ® ¢) = A(¢). Hence Dy

is an (L, ®)-uniformity on X and Up,, = U.
(2) We obtain f<(¢) € Q(X) as follows:

F=ay) = 50wy = (1) = Lapbie)s
= (yay) = gy
Then U/ = {¢ € Q(X) | f<(¢) < ¢} is a Hut-
ton (L, ®)-uniformity on X. We obtain Dys = {u €
E(X x X) | A(f<(¢)) < u} where
1 z€{a,b,c}, ye€{a,bc},

1 z=d, y=d,
0 otherwise.

A(f=(@)(z,y) = {

We obtain DUf =

Y= (v) < wu}. Since (f x f)*
have Dy; = Dy’

{u € E(X x X) | v € Dy, (f x
(A(9)) = A(F=(6)), we
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