Categories of two types of uniform spaces

Yong Chan Kim¹ and Seok Jong Lee²

¹ Department of Mathematics, Kangnung National University, Gangneung, 210-702, Korea

Department of Mathematics, Chungbuk National University, Cheongju, 361-763, Korea

Abstract

In a strictly two-sided, commutative biquantale, we study the relationships between the categories of Hutton (L, \otimes) uniform spaces and (L, \odot) -uniform spaces. We investigate the properties of them.

Key words: Hutton (L, \otimes) -uniform spaces, (L, \odot) -uniform spaces

1. Introduction

Recently, Gutiérrez García and his colleagues [1] introduced L-valued Hutton uniformity where a quadruple $(L, \leq, \otimes, *)$ is defined by a GL-monoid (L, *) dominated by \otimes , a cl-quasi-monoid (L, \leq, \otimes) . Kubiak and his colleagues [10] studied the relationships between the categories of I(L)-uniform spaces and L-uniform spaces. Kim and his colleagues [7], as a somewhat different aspect in [1], introduced the notion of Hutton (L, \otimes) -uniformities as a view point of the approach using uniform operators defined by Rodabaugh [13] and (L, \odot) -uniformities in a sense Lowen [11] and Höhle [12] based on powersets of the form $L^{X\times X}$.

In this paper, we show that the category HUnif of all Hutton (L, \otimes) -uniform spaces and H-uniformly continuous maps and the category Unif of all (L, \odot) -uniform spaces and uniformly continuous maps are isomorphic. Moreover, we define the subspaces of them.

2. Preliminaries

Definition 2.1. [3,4,7,8,12] A triple (L, \leq, \odot) is called a strictly two-sided, commutative biquantale (stscbiquantale, for short) iff it satisfies the following proper-

(L1) $L = (L, \leq, \vee, \wedge, \top, \bot)$ is a completely distributive lattice where \top is the universal upper bound and \bot is the universal lower bound;

(L2) (L, \odot) is a commutative semigroup;

Manuscript received Aug. 1, 2006; revised Sept. 15, 2006. Corresponding Author: Seok Jong Lee, sjl@chungbuk.ac.kr (L3) $a = a \odot \top$, for each $a \in L$;

(L4) ⊙ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

(L5) ⊙ is distributive over arbitrary meets, i.e.

$$(\bigwedge_{i\in\Gamma}a_i)\odot b=\bigwedge_{i\in\Gamma}(a_i\odot b).$$

Remark 2.2. [3,4,7,8,12] Let $(L, <, \odot)$ be a stscbiquantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \leq y\}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \text{ iff } x \le (y \to z).$$

In this paper, we always assume that $(L, \leq, \odot, *)$ is a stsc-biquantale with strong negation * where $a^* = a \rightarrow 0$ unless otherwise specified.

Let X be a nonempty set. All algebraic operations on Lcan be extended pointwisely to the set L^X as follows: for all $x \in X$, $f,g \in L^X$, $\lambda \in L^X$ and $\alpha \in L$,

- (1) $f \le g$ iff $f(x) \le g(x)$;
- $(2) (f \odot g)(x) = f(x) \odot g(x);$
- (3) $1_X(x) = \top$, $\alpha \odot 1_X(x) = \alpha$ and $1_{\emptyset}(x) = \bot$;
- (4) $(\alpha \to \lambda)(x) = \alpha \to \lambda(x)$ and $(\lambda \to \alpha)(x) =$ $\lambda(x) \to \alpha$;
 - (5) $(\alpha \odot \lambda)(x) = \alpha \odot \lambda(x)$.

Definition 2.3. [7] Let $\Omega(X)$ be a subset of $(L^X)^{(L^X)}$ such

- (O1) $\lambda \leq \phi(\lambda)$, for every $\lambda \in L^X$,
- (O2) $\phi(\bigvee_{i \in \Gamma} \lambda_i) = \bigvee_{i \in \Gamma} \phi(\lambda_i)$, for $\{\lambda_i\}_{i \in \Gamma} \subset L^X$, (O3) $\alpha \odot \phi(\lambda) = \phi(\alpha \odot \lambda)$, for $\lambda \in L^X$.

Lemma 2.4. [7] For $\phi, \phi_1, \phi_2 \in \Omega(X)$, we define, for all $\lambda \in L^X$,

$$\phi^{-1}(\lambda) = \bigwedge \{ \rho \in L^X \mid \phi(\rho^*) \le \lambda^* \},$$

$$\phi_1 \circ \phi_2(\lambda) = \phi_1(\phi_2(\lambda)),$$

$$\phi_1 \otimes \phi_2(\lambda) = \bigwedge \{ \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}.$$

For $\phi_1, \phi_2, \phi_3 \in \Omega(X)$, the following properties hold:

- (1) If $\phi(1_{\{x\}}) = \rho_x$ for all $x \in X$, then $\phi(\lambda) =$
- $\bigvee_{z\in X}\lambda(z)\odot\rho_z.$ (2) If $\phi_1(1_{\{x\}})=\phi_2(1_{\{x\}})$ for all $x\in X$, then $\phi_1 = \phi_2$.
 - (3) $\phi^{-1} \in \Omega(X)$, $(\phi^{-1})^{-1} = \phi$ and $\phi_1 \circ \phi_2 \in \Omega(X)$. (4) If $\phi_1 \leq \phi_2$, then $\phi_1^{-1} \leq \phi_2^{-1}$.

 - (5) $\phi_1 \otimes \phi_2 \in \Omega(X)$.
 - (6) $\phi_1 \otimes \phi_2 \leq \phi_1$ and $\phi_1 \otimes \phi_2 \leq \phi_2$.
 - $(7) (\phi_1 \otimes \phi_2) \otimes \phi_3 = \phi_1 \otimes (\phi_2 \otimes \phi_3).$
 - $(8) (\phi_1 \otimes \phi_2) \circ (\phi_1 \otimes \phi_2) \leq (\phi_1 \circ \phi_1) \otimes (\phi_2 \circ \phi_2).$
- (9) Define $\phi_{\top} \in \Omega(X)$ as $\phi_{\top}(1_{\{x\}}) = 1_X, \forall x \in X$. Then $\phi \leq \phi_{\top}$ for all $\phi \in \Omega(X)$.

Definition 2.5. [7] A nonempty subset U of $\Omega(X)$ is called a Hutton (L, \otimes) -quasi-uniformity on X if it satisfies the following conditions:

(QU1) If $\phi \leq \psi$ with $\phi \in \mathbf{U}$ and $\psi \in \Omega(X)$, then $\psi \in \mathbf{U}$.

- (QU2) For each $\phi, \psi \in \mathbf{U}, \phi \otimes \psi \in \mathbf{U}$.
- (QU3) For each $\phi \in \mathbf{U}$, there exists $\psi \in \mathbf{U}$ such that $\psi \circ \psi \leq \phi$.

The pair (X, \mathbf{U}) is said to be a *Hutton* (L, \otimes) - quasiuniform space.

A Hutton (L, \otimes) - quasi-uniform space is said to be a *Hutton* (L, \otimes) *-uniform space* if it satisfies

(U) For each $\phi \in \mathbf{U}$, there exists $\phi^{-1} \in \mathbf{U}$.

Definition 2.6. [7] Let $E(X \times X) = \{u \in L^{X \times X} \mid u(x,x) = 1\}$ be a subset of $L^{X \times X}$. A nonempty subset **D** of $E(X \times X)$ is called an (L, \odot) -quasi-uniformity on Xif it satisfies the following conditions:

(QD1) If $u \leq v$ with $u \in \mathbf{D}$ and $v \in E(X \times X)$, then $v \in \mathbf{D}$.

- (QD2) For each $u, v \in \mathbf{D}$, $u \odot v \in \mathbf{D}$.
- (QD3) For each $u \in \mathbf{D}$, there exists $v \in \mathbf{D}$ such that $v \circ v \leq u$ where

$$v\circ v(x,y)=\bigvee_{z\in X}(v(x,z)\odot v(z,y)).$$

The pair (X, \mathbf{D}) is said to be an (L, \odot) - quasi-uniform

An (L, \odot) -quasi-uniform space is said to be an (L, \odot) uniform space if it satisfies

(D) For each $u \in \mathbf{D}$, there exists $u^s \in \mathbf{U}$ where $u^s(x,y) = u(y,x).$

Definition 2.7. [7] A function $u: X \times X \to L$ is called an • guasi-equivalence relation iff it satisfies the following properties

- (E1) u(x, x) = 1 for all $x \in X$.
- (E2) $u(x, y) \odot u(y, z) \le u(x, z)$.

An ⊙-quasi-equivalence relation is called an ⊙equivalence relation on X if it satisfies

(E) u(x, y) = u(y, x).

We denote $u^2 = u \odot u$ and $u^{n+1} = u^n \odot u$ for each $u \in L^{X \times X}$.

Theorem 2.8. [7] Let $u: X \times X \to L$ be an \odot -equivalence relation. We define a mapping \mathbf{D}_u as follows:

$$\mathbf{D}_{u} = \{ v \in E(X \times X) \mid \exists n \in N, u^{n} \le v \}.$$

Then \mathbf{D}_u is an (L, \odot) -uniformity on X.

Theorem 2.9. [7] We define a mapping $\Gamma: E(X \times X) \to$ $\Omega(X)$ as follows:

$$\Gamma(u)(\lambda)(y) = \bigvee_{x \in X} \lambda(x) \odot u(x, y).$$

Then we have the following properties:

(1) For $u \in E(X \times X)$, $\Gamma(u) \in \Omega(X)$ and $\Gamma(u)$ has a right adjoint mapping $\Gamma(u)$ defined by

$$\Gamma(u)^{\leftarrow}(\lambda) = \bigvee \{ \rho \in L^X \mid \Gamma(u)(\rho) \le \lambda \}.$$

- (2) Γ is injective and join preserving.
- (3) Γ has a right adjoint mapping $\Lambda:\Omega(X)\to E(X imes I)$ X) as follows:

$$\Lambda(\phi)(x,y) = \phi(1_{\{x\}})(y).$$

(4)
$$\Gamma \circ \Lambda = 1_{\Omega(X)}$$
 and $\Lambda \circ \Gamma = E(X \times X)$.

Theorem 2.10. [7] Let $u, u_1, u_2 \in E(X \times X)$. Then we have the following properties:

- (1) If $u_1 \leq u_2$, $\Gamma(u_1) \leq \Gamma(u_2)$.
- (2) $\Gamma(u_1 \odot u_2) \leq \Gamma(u_1) \otimes \Gamma(u_2)$.
- $(3) \Gamma(1_{\Delta}) = 1_{L^X}.$
- $(4) \Gamma(u)^{-1} = \Gamma(u^s).$
- (5) $\Gamma(u)^{-1}(\lambda \rightarrow \bot) = \Gamma(u)^{\leftarrow}(\lambda) \rightarrow \bot$, for all $\lambda \in L^X$.
 - (6) $\Gamma(u_1 \circ u_2) = \Gamma(u_2) \circ \Gamma(u_1)$.
 - (7) $\Gamma(\alpha \odot u) = \alpha \odot \Gamma(u)$.
 - (8) If u is an \odot -equivalence relation on X, then

$$(\Gamma(u))^{-1} = \Gamma(u^s) = \Gamma(u), \quad \Gamma(u) \circ \Gamma(u) = \Gamma(u).$$

Theorem 2.11. [7] Let $u: X \times X \to L$ be an \odot -equivalence relation. We define a mapping \mathbf{U}_u as follows:

$$\mathbf{U}_u = \{ \phi \in \Omega(X) \mid \exists n \in \mathbb{N}, \ \Gamma(u^n) \le \phi \}.$$

Then U_u is a Hutton (L, \otimes) -uniformity on X.

Theorem 2.12. [7] Let $\phi, \phi_1, \phi_2 \in \Omega(X)$. Then we have the following properties:

- (1) If $\phi_1 \leq \phi_2$, then $\Lambda(\phi_1) \leq \Lambda(\phi_2)$.
- (2) $\Lambda(\phi_1) \odot \Lambda(\phi_2) = \Lambda(\phi_1 \otimes \phi_2)$.
- (3) $\Lambda(1_{L^X}) = 1_{\Delta}$.
- (4) $\Lambda(\phi)^s = \Lambda(\phi^{-1}).$
- (5) $\Lambda(\phi_1) \circ \Lambda(\phi_2) = \Lambda(\phi_2 \circ \phi_1).$
- (6) $\Lambda(\alpha \odot \phi) = \alpha \odot \Lambda(\phi)$.
- (7) If $\phi \circ \phi = \phi$ and $\phi = \phi^{-1}$, then $\Lambda(\phi)$ is an \odot -equivalence relation.

Theorem 2.13. [7] Let **D** be an (L, \odot) -uniform space. We define a mapping $\mathbf{U}_{\mathbf{D}} \subset \Omega(X)$ as follows:

$$\mathbf{U}_{\mathbf{D}} = \{ \phi \in \Omega(X) \mid \exists u \in \mathbf{D}, \Gamma(u) \leq \phi \}.$$

Then U_D is a Hutton (L, \otimes) - uniformity on X.

Theorem 2.14. [7] Let **U** be a Hutton (L, \otimes) -uniformity on X. We define a mapping $\mathbf{D_U} \subset E(X \times X)$ as follows:

$$\mathbf{D}_{\mathbf{U}} = \{ u \in E(X \times X) \mid \exists \phi \in \mathbf{U}, \Lambda(\phi) < u \}.$$

Then:

- (1) $\mathbf{D}_{\mathbf{U}}$ is an (L, \odot) -uniformity on X.
- (2) $\mathbf{D}_{\mathbf{U}_{\mathbf{D}}} = \mathbf{D}$ and $\mathbf{U}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{U}$.

3. Properties of two types of uniform spaces

Let $f: X \to Y$ be a function. We define the image and preimage operators

$$f^{\Rightarrow}: (L^X)^{(L^X)} \to (L^Y)^{(L^Y)},$$

$$f^{\Leftarrow}: (L^Y)^{(L^Y)} \to (L^X)^{(L^X)}$$

such that for each $\phi \in (L^X)^{(L^X)}$ and $\psi \in (L^Y)^{(L^Y)}$ for all $\mu, \mu_1, \mu_2 \in L^X, \rho_1, \rho_2 \in L^Y$,

$$f^{\Rightarrow}(\phi)(\rho) = (f^{\rightarrow} \circ \phi \circ f^{\leftarrow})(\rho) = f^{\rightarrow}(\phi(f^{\leftarrow}(\rho)),$$

$$f^{\leftarrow}(\psi)(\mu) = (f^{\leftarrow} \circ \psi \circ f^{\rightarrow})(\mu) = f^{\leftarrow}(\psi(f^{\rightarrow}(\mu))).$$

Lemma 3.1. For each $\psi, \psi_1, \psi_2 \in \Omega(Y)$ and $\phi_1, \phi_2 \in \Omega(X)$, we have the following properties.

- (1) The pair $(f^{\Rightarrow}, f^{\Leftarrow})$ is a Galois connection; i.e., $f^{\Rightarrow} \dashv f^{\Leftarrow}$.
- (2) $f^{\rightarrow}(\mu_1 \odot \mu_2) \leq f^{\rightarrow}(\mu_1) \odot f^{\rightarrow}(\mu_2)$ with equality if f is injective and $f^{\leftarrow}(\rho_1 \odot \rho_2) = f^{\leftarrow}(\rho_1) \odot f^{\leftarrow}(\rho_2)$.
 - (3) $f^{\Leftarrow}(\psi) \in \Omega_X$.
 - (4) If $\psi_1 \leq \psi_2$, then $f^{\Leftarrow}(\psi_1) \leq f^{\Leftarrow}(\psi_2)$.
- (5) $f \leftarrow (\psi_1) \circ f \leftarrow (\psi_2) \leq f \leftarrow (\psi_1 \circ \psi_2)$ with equality if f is onto.
 - (6) $(f^{\Leftarrow}(\psi))^{-1} = f^{\Leftarrow}(\psi^{-1}) \in \Omega_X$.
- $(7) f^{\Leftarrow}(\psi_1) \odot f^{\Leftarrow}(\psi_2) = f^{\Leftarrow}(\psi_1 \odot \psi_2) \text{ and } f^{\Rightarrow}(\phi_1) \odot f^{\Rightarrow}(\phi_2) \ge f^{\Rightarrow}(\phi_1 \odot \phi_2).$
- (8) $f^{\rightarrow}((f^{\Leftarrow}(\psi))^{-1}(\mu)) \leq \psi^{-1}(f^{\rightarrow}(\mu))$, for all $\mu \in L^X$.

Proof. (1) We prove the following statements:

$$\begin{split} f^{\Leftarrow} \Big(f^{\Rightarrow}(\psi) \Big) (\mu) &= f^{\leftarrow} \Big(f^{\Rightarrow}(\psi) \Big) (f^{\leftarrow}(\mu)) \\ &= f^{\leftarrow} (f^{\rightarrow}(\psi(f^{\leftarrow}(f^{\rightarrow}(\mu))))) \\ &\geq \psi(\mu). \end{split}$$

Similarly, $f^{\Rightarrow}(f^{\Leftarrow}(\phi))(\rho) \leq \phi(\rho)$. Thus, $f^{\Rightarrow} \dashv f^{\Leftarrow}$.

- (2-5) can be easily proved.
- (6) Suppose there exists $\mu \in L^X$ such that

$$(f^{\Leftarrow}(\psi))^{-1}(\mu) \not\leq f^{\Leftarrow}(\psi^{-1})(\mu).$$

By the definition of $f^{\leftarrow}(\psi^{-1})(\mu) = f^{\leftarrow}(\psi^{-1}(f^{\rightarrow}(\mu)))$, there exists $\rho \in L^Y$ with $\psi(\rho^*) \leq (f^{\rightarrow}(\mu))^*$ such that

$$(f^{\Leftarrow}(\psi))^{-1}(\mu) \not\leq f^{\leftarrow}(\rho).$$

On the other hand, since

$$\psi(f^{\rightarrow}(f^{\leftarrow}(\rho)^*)) = \psi(f^{\rightarrow}(f^{\leftarrow}(\rho^*))) \le \psi(\rho^*)$$

$$f^{\leftarrow}(\psi(\rho^*)) \le f^{\leftarrow}(f^{\rightarrow}(\mu)^*) = (f^{\leftarrow}(f^{\rightarrow}(\mu)))^* \le \mu^*,$$

we have $f^{\leftarrow}(\psi(f^{\rightarrow}(f^{\leftarrow}(\rho)^*))) \leq \mu^*$. So, $(f^{\Leftarrow}(\psi))^{-1}(\mu) \not\leq f^{\leftarrow}(\rho)$. It is a contradiction. Thus, $(f^{\Leftarrow}(\psi))^{-1} \leq f^{\Leftarrow}(\psi^{-1})$. It implies $(f^{\Leftarrow}(\psi^{-1}))^{-1} \leq f^{\Leftarrow}(\psi)$. So, $f^{\Leftarrow}(\psi^{-1}) \leq (f^{\Leftarrow}(\psi))^{-1}$. From (3) and Lemma 2.4 (3,4), $(f^{\Leftarrow}(\psi))^{-1} = f^{\Leftarrow}(\psi^{-1}) \in \Omega(X)$.

(7) Suppose there exist $\mu \in L^X$ and $x \in X$ such that

$$(f^{\Leftarrow}(\psi_1) \odot f^{\Leftarrow}(\psi_2))(\mu)(x) \not\leq f^{\Leftarrow}(\psi_1 \odot \psi_2)(\mu)(x)$$

$$= f^{\leftarrow}(\psi_1 \odot \psi_2)(f^{\rightarrow}(\mu))(\psi(x)).$$

Then there exist $\nu_i \in L^Y$ with $f^{\rightarrow}(\mu) = \nu_1 \odot \nu_2$ such that

$$\left(f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\right)(\mu)(x) \not\leq \psi_1(\nu_1)(f(x))\odot \psi_2(\nu_2)(f(x))$$

Since $\mu \le f^{\leftarrow}(f^{\rightarrow}(\mu)) = f^{\leftarrow}(\nu_1) \odot f^{\leftarrow}(\nu_2)$ from (2), we have

$$\begin{split} & \left(f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\right)(\mu) \\ & \leq \left(f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\right)(f^{\leftarrow}(\nu_1)\odot f^{\leftarrow}(\nu_2)) \\ & \leq f^{\Leftarrow}(\psi_1)(f^{\leftarrow}(\nu_1))\odot f^{\Leftarrow}(\psi_2)(f^{\leftarrow}(\nu_2)) \\ & = f^{\leftarrow}(\psi_1(f^{\rightarrow}(f^{\leftarrow}(\nu_1))))\odot f^{\leftarrow}(\psi_2(f^{\rightarrow}(f^{\leftarrow}(\nu_2)))) \\ & \leq f^{\leftarrow}(\psi_1(\nu_1))\odot f^{\leftarrow}(\psi_2(\nu_2)). \end{split}$$

Thus, $\left(f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\right)(\mu)(x) \leq \psi_1(\nu_1)(f(x))\odot \psi_2(\nu_2)(f(x))$. It is a contradiction. Hence $f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\leq f^{\Leftarrow}(\psi_1\odot\psi_2)$.

Suppose there exist $\rho \in L^X$ and $x \in X$ such that

$$\left(f^{\Leftarrow}(\psi_1)\odot f^{\Leftarrow}(\psi_2)\right)(\rho)(x) \not\geq f^{\Leftarrow}(\psi_1\odot\psi_2)(\rho)(x)$$

$$= (\psi_1\odot\psi_2)(f^{\to}(\rho))(f(x)).$$

Then there exist $\rho_i \in L^X$ with $\rho = \rho_1 \odot \rho_2$ such that

$$\left(f^{\Leftarrow}(\psi_1)(\rho_1) \odot f^{\Leftarrow}(\psi_2)(\rho_2)\right)(x)
= (\psi_1(f^{\rightarrow}(\rho_1))(f(x)) \odot (\psi_2(f^{\rightarrow}(\rho_2))(f(x))
\not\geq f^{\Leftarrow}(\psi_1 \odot \psi_2)(\rho)(x)$$

Since
$$f^{\rightarrow}(\rho) \leq f^{\rightarrow}(\rho_1) \odot f^{\rightarrow}(\rho_2)$$
 from (2),

$$f \leftarrow (\psi_1 \odot \psi_2)(\rho)(x)$$

$$= (\psi_1 \odot \psi_2)(f \rightarrow (\rho))(f(x))$$

$$\leq (\psi_1 \odot \psi_2)(f \rightarrow (\rho_1) \odot f \rightarrow (\rho_2))(f(x))$$

$$= (\psi_1(f \rightarrow (\rho_1)) \odot \psi_2(f \rightarrow (\rho_2)))(f(x)).$$

It is a contradiction. Thus

$$f^{\Leftarrow}(\psi_1) \odot f^{\Leftarrow}(\psi_2) \ge f^{\Leftarrow}(\psi_1 \odot \psi_2).$$

We will show $f^{\Rightarrow}(\phi_1) \odot f^{\Rightarrow}(\phi_2) \ge f^{\Rightarrow}(\phi_1 \odot \phi_2)$ from:

$$\begin{split} f^{\Rightarrow}(\phi_{1}) \odot f^{\Rightarrow}(\phi_{2})(\mu) \\ &= \bigwedge \{ f^{\Rightarrow}(\phi_{1})(\mu_{1}) \odot f^{\Rightarrow}(\phi_{2})(\mu_{2}) \mid \mu = \mu_{1} \odot \mu_{2} \} \\ &= \bigwedge \{ f^{\rightarrow}(\phi_{1}(f^{\leftarrow}(\mu_{1}))) \odot f^{\rightarrow}(\phi_{2}(f^{\leftarrow}(\mu_{2}))) \mid \\ & \mu = \mu_{1} \odot \mu_{2} \} \\ &\geq \bigwedge \{ f^{\rightarrow} \Big(\phi_{1}(f^{\leftarrow}(\mu_{1})) \odot \phi_{2}(f^{\leftarrow}(\mu_{2})) \Big) \mid \\ & f^{\leftarrow}(\mu) = f^{\leftarrow}(\mu_{1}) \odot f^{\leftarrow}(\mu_{2}) \} \\ &\geq f^{\rightarrow} \Big(\bigwedge \{ \phi_{1}(f^{\leftarrow}(\mu_{1})) \odot \phi_{2}(f^{\leftarrow}(\mu_{2})) \mid \\ & f^{\leftarrow}(\mu) = f^{\leftarrow}(\mu_{1}) \odot f^{\leftarrow}(\mu_{2}) \} \Big) \\ &\geq f^{\rightarrow}(\phi_{1} \odot \phi_{2})(f^{\leftarrow}(\mu)). \end{split}$$

(8) From (6), we have for all $\mu \in L^X$,

$$\begin{split} f^{\rightarrow}((f^{\Leftarrow}(\psi))^{-1}(\mu)) \\ &= f^{\rightarrow}(f^{\Leftarrow}(\psi^{-1})(\mu)) \text{ (by (6))} \\ &= f^{\rightarrow}(f^{\leftarrow}(\psi^{-1}(f^{\rightarrow}(\mu)))) \\ &\leq \psi^{-1}(f^{\rightarrow}(\mu)). \end{split}$$

Example 3.2. Let $X=\{a,b,c\}$ and $Y=\{x,y\}$ be sets and L=[0,1] an unit interval. Define a binary operation \otimes (called Łukasiewicz conjection) on [0,1] by

$$x \odot y = \max\{0, x + y - 1\}.$$

Then $([0,1],\vee,\odot,0,1)$ is a stsc-biquantale (ref.[2-4]). Let $\mu,\nu\in[0,1]^X$ as follows:

$$\mu(a) = 0.7, \mu(b) = 0.5, \mu(c) = 0.8,$$

 $\nu(a) = 0.6, \nu(b) = 0.9, \nu(c) = 0.7.$

Then $(\mu \odot \nu)(a) = 0.3$, $(\mu \odot \nu)(b) = 0.4$, $(\mu \odot \nu)(c) = 0.5$. Let $f: X \to Y$ be a function by f(a) = f(b) = x, f(c) = y. Then $f^{\to}(\mu)(x) = 0.7$, $f^{\to}(\mu)(y) = 0.8$ and $f^{\to}(\nu)(x) = 0.9$, $f^{\to}(\nu)(y) = 0.7$. Thus, $(f^{\to}(\mu) \odot f^{\to}(\nu))(x) = 0.6$ and $(f^{\to}(\mu) \odot f^{\to}(\nu))(y) = 0.5$. But $f^{\to}(\mu \odot \nu)(x) = 0.4$, $f^{\to}(\mu \odot \nu)(y) = 0.5$. Hence $f^{\to}(\mu \odot \nu) \neq f^{\to}(\mu) \odot f^{\to}(\nu)$ because f is not injective.

Lemma 3.3. Let $f: X \to Y$ be a function. For each $v, v_1, v_2 \in E(Y \times Y), \phi \in \Omega(Y)$ and $\lambda \in L^X$, we have:

$$(1) f \leftarrow (\Gamma(v)) = f \leftarrow \circ \Gamma(v) \circ f \rightarrow = \Gamma((f \times f) \leftarrow (v)).$$

(2) $(f \times f) \leftarrow (\Lambda(\phi)) = \Lambda(f \leftarrow (\phi)).$

$$(3) \Gamma((f \times f) - (v^s)) = \Gamma(((f \times f) - (v))^s) = \Gamma((f \times f) - (v))^{-1}.$$

$$(4) (f \times f) \leftarrow (v_1 \odot v_2) = (f \times f) \leftarrow (v_1) \odot (f \times f) \leftarrow (v_2).$$

$$(5) (f \times f)^{\leftarrow}(v) \circ (f \times f)^{\leftarrow}(v) \le (f \times f)^{\leftarrow}(v \circ v).$$

(6) If v is an \odot -equivalence relation on Y, then $(f \times f)^{\leftarrow}(v)$ is an \odot -equivalence relation on X.

Proof. (1) It is proved from:

$$\begin{split} f^{\leftarrow}(\Gamma(v))(\lambda)(x) \\ &= f^{\leftarrow} \circ \Gamma(v) \circ f^{\rightarrow}(\lambda)(x) \\ &= \Gamma(v)(f^{\rightarrow}(\lambda))(f(x)) \\ &= \bigvee_{y \in Y} \{f^{\rightarrow}(\lambda)(y) \odot v(y, f(x))\} \\ &= \bigvee_{z \in X} \{f^{\rightarrow}(\lambda)(f(z)) \odot v(f(z), f(x))\} \\ &= \bigvee_{z \in X} \{\lambda(z) \odot (f \times f)^{\leftarrow}(v)(z, x)\} \\ &= \Gamma((f \times f)^{\leftarrow}(v))(\lambda)(x). \end{split}$$

(2)

$$\Lambda(f^{\Leftarrow}(\phi))(x,y) = f^{\Leftarrow}(\phi)(1_{\{x\}})(y)
= f^{\leftarrow}(\phi(f^{\rightarrow}(1_{\{x\}})))(y)
= \phi(1_{\{f(x)\}})(f(y))
= (f \times f)^{\leftarrow}(\Lambda(\phi))(x,y).$$

(3) $\Gamma((f \times f) \vdash (v^s))(v^s)(\lambda)(x)$ $= ((f \times f) \vdash (v))^s(\lambda)$ $= \bigvee_{y \in X} \{\lambda(y) \odot (f \times f) \vdash (v^s)(y, x))\}$ $= \bigvee_{y \in X} \{\lambda(y) \odot v^s(f(y), f(x))\}$

 $=\bigvee_{y\in X}\{\lambda(y)\odot(f\times f)^{\leftarrow}(v)(x,y)\}$ =\V_{y\in X}\{\lambda(y)\omega\)((f\times f)^{\leftarrow}(v))^s(y,x)\} =\Gamma(((f\times f)^{\leftarrow}(v))^s)(\lambda)(x) Furthermore, by Lemma 2.10(4), $\Gamma(((f \times f)^{\leftarrow}(v))^s) = \Gamma((f \times f)^{\leftarrow}(v))^{-1}$.

(4) It is easily proved.

(5)

$$\begin{split} &(f \times f)^{\leftarrow}(v) \circ (f \times f)^{\leftarrow}(v)(x_1, x_2) \\ &= \bigvee_{z \in X} (f \times f)^{\leftarrow}(v)(x_1, z) \odot (f \times f)^{\leftarrow}(v)(z, x_2) \\ &= \bigvee_{z \in X} v(f(x_1), f(z)) \odot v(f(z), f(x_2)) \\ &\leq \bigvee_{y \in Y} v(f(x_1), y) \odot v(y, f(x_2)) \\ &= v \circ v(f(x_1), f(x_2)) \\ &= (f \times f)^{\leftarrow}(v \circ v)(x_1, x_2). \end{split}$$

(6) We have to check the axioms of Definition 2.7.

$$\begin{aligned} &(\text{E1}) \ (f \times f)^{\leftarrow}(v)(x,x) = v(f(x),f(x)) = 1. \\ &(\text{E2}) \ (f \times f)^{\leftarrow}(v) \circ (f \times f)^{\leftarrow}(v) \leq (f \times f)^{\leftarrow}(v \circ v) = \\ &(f \times f)^{\leftarrow}(v). \\ &(\text{E}) \ (f \times f)^{\leftarrow}(v^s) = ((f \times f)^{\leftarrow}(v))^s. \end{aligned}$$

Example 3.4. Let $X = \{a, b, c, d\}, Y = \{x, y, z\}$ be sets and $([0, 1], \odot)$ a biquantale defined by $x \odot y = \max\{0, x + y - 1\}$. Define a function $f: X \to Y$ as follows:

$$f(a) = f(b) = x, f(b) = y, f(d) = z.$$

Let $v \in E(Y \times Y)$ be defined as

$$v(x,x) = v(y,y) = v(z,z) = v(x,y) = 1,$$

 $v(y,x) = 0.7, \quad v(y,z) = v(z,y) = 0.6,$
 $v(x,z) = v(z,x) = 0.5.$

Then

$$\Gamma(v)(1_{\{x\}}) = \rho_x, \quad \rho_x(x) = 1, \rho_x(y) = 1, \rho_x(z) = 0.5,$$

$$\Gamma(u)(1_{\{y\}}) = \rho_y, \quad \rho_y(x) = 0.7, \rho_y(y) = 1, \rho_y(z) = 0.6,$$

$$\Gamma(u)(1_{\{z\}}) = \rho_z, \quad \rho_z(x) = 0.5, \rho_z(y) = 0.6, \rho_z(z) = 1.$$

Furthermore,

$$\begin{split} f^{\Leftarrow}(\Gamma(v))(1_{\{a\}}) &= f^{\Leftarrow}(\Gamma(v))(1_{\{b\}}) = f^{\leftarrow}(\rho_x), \\ f^{\Leftarrow}(\Gamma(v))(1_{\{c\}}) &= f^{\leftarrow}(\rho_y), \quad f^{\Leftarrow}(\Gamma(v))(1_{\{d\}}) = f^{\leftarrow}(\rho_z). \end{split}$$
 Since

$$\begin{split} &\Gamma((f\times f)^{\leftarrow}(v))(1_{\{a\}})\\ &=\bigvee_{x\in X}1_{\{a\}}(x)\odot(f\times f)^{\leftarrow}(v)(x,-)\\ &=(f\times f)^{\leftarrow}(v)(a,-)=v(x,f(-))=f^{\leftarrow}(\rho_x), \end{split}$$

by a similar method, $\Gamma((f \times f)^{\leftarrow}(v))(1_{\{a\}}) = f^{\Leftarrow}(\Gamma(v))(1_{\{a\}})$ for all $a \in X$. By Lemma 2.4(2), $\Gamma((f \times f)^{\leftarrow}(v)) = f^{\Leftarrow}(\Gamma(v))$.

Definition 3.5. (1) Let (X, \mathbf{U}_1) and (Y, \mathbf{U}_2) be Hutton (L, \otimes) -uniform spaces. A function $f:(X, \mathbf{U}_1) \to (Y, \mathbf{U}_2)$ is H-uniformly continuous if $f \leftarrow (\psi) \in \mathbf{U}_1$, for every $\psi \in \mathbf{U}_2$.

(2) Let (X, \mathbf{D}_1) and (Y, \mathbf{D}_2) be (L, \odot) -uniform spaces. A function $f: (X, \mathbf{D}_1) \to (Y, \mathbf{D}_2)$ is uniformly continuous if $(f \times f)^{\leftarrow}(v) \in \mathbf{D}_1$, for every $v \in \mathbf{D}_2$.

Theorem 3.6. (1) Let (X, \mathbf{U}_1) , (Y, \mathbf{U}_2) and (Z, \mathbf{U}_3) be Hutton (L, \otimes) -uniform spaces. If $f: (X, \mathbf{U}_1) \to (Y, \mathbf{U}_2)$ and $g: (Y, \mathbf{U}_2) \to (Z, \mathbf{U}_3)$ are H-uniformly continuous, then $g \circ f: (X, \mathbf{U}_1) \to (Y, \mathbf{U}_3)$ is H-uniformly continuous

(2) Let (X, \mathbf{D}_1) , (Y, \mathbf{D}_2) and (Z, \mathbf{D}_3) be (L, \odot) -uniform spaces. If $f:(X, \mathbf{D}_1) \to (Y, \mathbf{D}_2)$ and $g:(Y, \mathbf{D}_2) \to (Z, \mathbf{D}_3)$ are uniformly continuous, then $g \circ f:(X, \mathbf{D}_1) \to (Y, \mathbf{D}_3)$ is uniformly continuous.

Proof. (1) Since $f \leftarrow (g \leftarrow (\psi)) = (g \circ f) \leftarrow (\psi)$ for each $\psi \in \mathbf{U}_3$, it is easily proved.

(2) For each $v \in \mathbf{D}_3$, $((g \circ f) \times (g \circ f))^{\leftarrow}(v) = (f \times f)^{\leftarrow}((g \times g)^{\leftarrow}(v)) \in \mathbf{D}_1$.

Theorem 3.7. Let (X, \mathbf{D}_1) and (Y, \mathbf{D}_2) be (L, \odot) -uniform spaces. If $f:(X, \mathbf{D}_1) \to (Y, \mathbf{D}_2)$ is uniformly continuous, then $f:(X, \mathbf{U}_{\mathbf{D}_1}) \to (Y, \mathbf{U}_{\mathbf{D}_2})$ is H-uniformly continuous.

Proof. For each $\psi \in \mathbf{U}_{\mathbf{D}_2}$, there exists $v \in \mathbf{D}_2$ with $\Gamma(v) \leq \psi$. Since f is uniformly continuous, for $v \in \mathbf{D}_2$, $(f \times f)^{\leftarrow}(v) \in \mathbf{D}_1$. By Lemma 3.3(1), since

$$\Gamma((f \times f)^{\leftarrow}(v)) = f^{\Leftarrow}(\Gamma(v)) < f^{\Leftarrow}(\phi)$$

we have $f^{\Leftarrow}(\phi) \in \mathbf{U}_{\mathbf{D}_1}$.

Theorem 3.8. Let (X, \mathbf{U}_1) and (Y, \mathbf{U}_2) be Hutton (L, \otimes) -uniform spaces.

- (1) A function $f:(X,\mathbf{U}_1)\to (Y,\mathbf{U}_2)$ is H-uniformly continuous iff $f:(X,\mathbf{D}_{\mathbf{U}_1})\to (Y,\mathbf{D}_{\mathbf{U}_2})$ is uniformly continuous
- (2) In Theorem 3.7, $f:(X,\mathbf{D}_1)\to (Y,\mathbf{D}_2)$ is uniformly continuous iff $f:(X,\mathbf{U}_{\mathbf{D}_1})\to (Y,\mathbf{U}_{\mathbf{D}_2})$ is H-uniformly continuous.

206

Proof. (1) For each $v \in \mathbf{D}_{\mathbf{U}_2}$, there exists $\psi \in \mathbf{U}_2$ with $\Lambda(\psi) \leq v$. Since f is H-uniformly continuous, for $\psi \in \mathbf{U}_2$, $f^{\Leftarrow}(\psi) \in \mathbf{U}_1$. By Lemma 3.3(2), since

$$(f \times f)^{\leftarrow}(\Lambda(\phi)) = \Lambda(f^{\Leftarrow}(\phi)) \le (f \times f)^{\leftarrow}(v)$$

we have $(f \times f)^{\leftarrow}(v) \in \mathbf{D}_{\mathbf{U}_1}$.

Conversely, since $(\mathbf{U}_i)_{\mathbf{D}_{\mathbf{U}_i}} = \mathbf{U}_i$ for i=1,2 from Theorem 2.14, it is easily proved.

(2) Since $(\mathbf{D}_i)_{\mathbf{U}_{\mathbf{D}_i}} = \mathbf{D}_i$ for i = 1, 2 from Theorem 2.14, it is easily proved.

The class of all Hutton (L, \otimes) -uniform spaces and H-uniformly continuous maps forms a category, which is denoted by **HUnif**.

Moreover, the class of all (L, \odot) -uniform spaces and uniformly continuous maps forms a category, which is denoted by **Unif**.

Theorem 3.9. Define maps $F: \mathbf{HUnif} \to \mathbf{Unif}$ and $G: \mathbf{Unif} \to \mathbf{HUnif}$ by $F(X, \mathbf{U}) = (X, \mathbf{D_U}), F(f) = f$ and $G(X, \mathbf{D}) = (X, \mathbf{U_D}), G(g) = g$, respectively. Then F and G are functors and \mathbf{HUnif} and \mathbf{Unif} are isomorphic.

Proof. By Theorems 3.6-8, F and G are functors. From Theorem 2.14, $F \circ G(X, \mathbf{D}) = (X, \mathbf{D})$ and $G \circ F(X, \mathbf{U}) = (X, \mathbf{U})$. So, **HUnif** and **Unif** are isomorphic.

Theorem 3.10. Let (Y, \mathbf{U}) be a Hutton (L, \otimes) -uniform space, X a set and $f: X \to Y$ a function. Define a subset \mathbf{U}^f of $\Omega(X)$ as follows:

$$\mathbf{U}^f = \{ \phi \in \Omega(X) \mid \exists \psi \in \mathbf{U}, \ f^{\Leftarrow}(\psi) \le \phi \}.$$

Then we have the following properties.

- (1) The structure \mathbf{U}^f is the coarsest Hutton (L,\otimes) -uniformity on X for which each f is H-uniformly continuous
- (2) A map $g:(Z,\mathbf{U}_1)\to (X,\mathbf{U}^f)$ is H-uniformly continuous iff $f\circ g:(Z,\mathbf{U}_1)\to (Y,\mathbf{U})$ is H-uniformly continuous.

Proof. (1) First, we will show that \mathbf{U}^f is a Hutton (L, \otimes) -uniformity on X.

(QU1) Obvious. (QU2) If $\phi_1,\phi_2\in \mathbf{U}^f$, there exists $\psi_i\in \mathbf{U}$ with $f^{\Leftarrow}(\psi_i)\leq \phi_i$ for i=1,2. Since $f^{\Leftarrow}(\psi_1)\otimes f^{\Leftarrow}(\psi_2)=f^{\Leftarrow}(\psi_1\otimes \psi_2)\leq \phi_1\otimes \phi_2$ from Lemma 3.1(7), we have $\phi_1\otimes \phi_2\in \mathbf{U}^f$.

(QU3) For each $\phi \in \mathbf{U}^f$, there exists $\psi \in \mathbf{U}$ with $f^{\Leftarrow}(\psi) \leq \phi_i$. For $\psi \in \mathbf{U}$, since (Y, \mathbf{U}) is a Hutton (L, \otimes) -uniform space, by (QU3), there exists $\gamma \in \mathbf{U}$ with $\gamma \circ \gamma \leq \psi$. By Lemma 3.1(5), since

$$f^{\Leftarrow}(\gamma) \circ f^{\Leftarrow}(\gamma) \le f^{\Leftarrow}(\gamma \circ \gamma) \le f^{\Leftarrow}(\psi) \le \phi,$$

then $f^{\Leftarrow}(\gamma) \in \mathbf{U}^f$.

(U) For each $\phi \in \mathbf{U}^f$, there exists $\psi \in \mathbf{U}$ with $f^{\leftarrow}(\psi) \leq \phi$. For $\psi \in \mathbf{U}$, since (Y, \mathbf{U}) is a Hutton (L, \otimes) -uniform space, by (U), there exists $\psi^{-1} \in \mathbf{U}$. By Lemma 3.1(6), we have

$$f^{\Leftarrow}(\psi^{-1}) = (f^{\Leftarrow}(\psi))^{-1} \le \phi^{-1}.$$

Thus, $\phi^{-1} \in \mathbf{U}^f$

Second, by definition of \mathbf{U}^f , $f^{\Leftarrow}(\psi) \in \mathbf{U}^f$, for all $\psi \in \mathbf{U}$. Hence $f:(X,\mathbf{U}^f) \to (Y,\mathbf{U})$ is H-uniformly continuous.

Finally, let $f:(X,\mathbf{U}_1)\to (Y,\mathbf{U})$ be H-uniformly continuous. For each $\phi\in\mathbf{U}^f$, there exists $\psi\in\mathbf{U}$ with $f^{\Leftarrow}(\psi)\leq\phi$. Since $f^{\Leftarrow}(\psi)\in\mathbf{U}_1$, then $\phi\in\mathbf{U}_1$. Hence $\mathbf{U}^f\subset\mathbf{U}_1$.

(2) Necessity of the composition condition is clear since the composition of H-uniformly continuous maps is H-uniformly continuous.

If $\phi \in \mathbf{U}^f$, there exists $\psi \in \mathbf{U}$ such that $f \in (\psi) \leq \phi$. Since $f \circ g$ is H-uniformly continuous, for $\psi \in \mathbf{U}$,

$$(f \circ g)^{\Leftarrow}(\psi) = g^{\Leftarrow} \circ f^{\Leftarrow}(\psi) \in \mathbf{U}_1.$$

Since $g^{\Leftarrow}(\phi) \geq g^{\Leftarrow} \circ f^{\Leftarrow}(\psi) \in \mathbf{U}_1$, we have $g^{\Leftarrow}(\phi) \in \mathbf{U}_1$.

Theorem 3.11. Let (Y, \mathbf{D}) be an (L, \odot) -uniform space, X a set and $f: X \to Y$ a function. Define a subset \mathbf{D}^f of $E(X \times X)$ as follows:

$$\mathbf{D}^f = \{ u \in E(X \times X) \mid \exists v \in \mathbf{U}, \ (f \times f)^{\leftarrow}(v) \le u \}.$$

Then we have the following properties.

- (1) The structure \mathbf{D}^f is the coarsest (L, \odot) -uniformity on X for which each f is uniformly continuous.
- (2) $g:(Z,\mathbf{D}_1)\to (X,\mathbf{D}^f)$ is uniformly continuous iff $f\circ g:(Z,\mathbf{D}_1)\to (Y,\mathbf{D})$ is uniformly continuous.
 - $(3) \mathbf{U}_{\mathbf{D}^f} = \mathbf{U}_{\mathbf{D}}^f.$
- (4) If (Y, \mathbf{U}) be a Hutton (L, \otimes) -uniform space, then $\mathbf{D}_{\mathbf{U}^f} = \mathbf{D}_{\mathbf{U}}^{\ f}$.

Proof. (1) and (2) are similarly proved as in Theorem 3.10.

(3) If $\phi \in \mathbf{U_{D^f}}$, there exists $u \in \mathbf{D}^f$ with $\Gamma(u) \leq \phi$. Since $u \in \mathbf{D}^f$, there exists $v \in \mathbf{D}$ such that $(f \times f)^{\leftarrow}(v) \leq u$. So, $v \in \mathbf{D}$ implies $\Gamma(v) \in \mathbf{U_D}$. Since $f = (\Gamma(v)) = \Gamma((f \times f)^{\leftarrow}(v)) \leq \Gamma(u) \leq \phi$ from Lemma 3.3(1), we have $\phi \in \mathbf{U_D}^f$. Hence $\mathbf{U_{D^f}} \subset \mathbf{U_D}^f$.

If $\phi \in \mathbf{U_D}^f$, there exists $\psi \in \mathbf{U_D}$ with $f^{\leftarrow}(\psi) \leq \phi$. Since $\psi \in \mathbf{U_D}$, there exists $v \in \mathbf{D}$ such that $\Gamma(v) \leq \psi$ and $(f \times f)^{\leftarrow}(v) \in \mathbf{D}^f$. Since

$$\Gamma((f \times f)^{\leftarrow}(v)) = f^{\Leftarrow}(\Gamma(v)) \le f^{\Leftarrow}(\psi) \le \phi,$$

we have $\phi \in \mathbf{U}_{\mathbf{D}^f}$. Hence $\mathbf{U}_{\mathbf{D}^f} \supset \mathbf{U}_{\mathbf{D}}^f$.

(4) If $u \in \mathbf{D_U}^f$, there exists $v \in \mathbf{D_U}$ with $(f \times f)^{\leftarrow}(v) \leq u$. Since $v \in \mathbf{D_U}$, there exists $\psi \in \mathbf{U}$ such that $\Lambda(\psi) \leq v$. It follows $f^{\Leftarrow}(\psi) \in \mathbf{U}^f$. By Lemma 3.3(2), since $\Lambda(f^{\Leftarrow}(\psi)) = (f \times f)^{\leftarrow}(\Lambda(\psi) \leq (f \times f)^{\leftarrow}(v) \leq u$, we have $u \in \mathbf{D_{U^f}}$. Hence $\mathbf{D_{U^f}} \supset \mathbf{D_U}^f$.

If $u \in \mathbf{D}_{\mathbf{U}^f}$, there exists $\phi \in \mathbf{U}^f$ with $\Lambda(\phi) \leq u$. Since $\phi \in \mathbf{U}^f$, there exists $\psi \in \mathbf{U}$ such that $f^{\leftarrow}(\psi) \leq \phi$. Since $\Lambda(\psi) \in \mathbf{D}_{\mathbf{U}}$ and

$$(f \times f)^{\leftarrow}(\Lambda(\psi)) = \Lambda(f^{\Leftarrow}(\psi)) < \lambda(\phi) < u,$$

we have $u \in \mathbf{D_U}^f$. Hence $\mathbf{D_U}^f \subset \mathbf{D_U}^f$.

Theorem 3.12. Let $w: Y \times Y \to L$ be an \odot -equivalence relation and $\hat{f}: X \to Y$ a function. Then $\mathbf{U}_{\mathbf{D}_w^f} = \mathbf{U}_{\mathbf{D}_w}^f$ is defined as follows:

$$\mathbf{U}_{\mathbf{D}_{n}^{f_{n}}} = \{ \phi \in \Omega(X) \mid \exists n \in N, f^{\Leftarrow}(\Gamma(w^{n})) \leq \phi \}.$$

Proof. From Theorems 2.8 and 2.11, we obtain

$$\mathbf{D}_w = \{ v \in E(Y \times Y) \mid \exists n \in N, w^n \le v \},\$$

$$\mathbf{U}_{\mathbf{D}_w} = \{ \psi \in \Omega(Y) \mid \exists n \in N, \Gamma(w^n) \le \phi \}.$$

Since $(f \times f)^{\leftarrow}(v)$ is an \odot -equivalence relation on X from Lemma 3.3(6), we obtain

$$\mathbf{D}_w^f = \{ u \in E(X \times X) \mid \exists n \in N, (f \times f)^{\leftarrow}(v)^n \le u \}.$$

Since $\Gamma((f \times f)^{\leftarrow}(w)^n) = \Gamma((f \times f)^{\leftarrow}(w^n)) = f^{\leftarrow}(\Gamma(w^n))$ from Lemma 3.3(1), we have

$$\mathbf{U}_{\mathbf{D}^f} = \{ \phi \in \Omega(X) \mid \exists n \in N, f^{\Leftarrow}(\Gamma(w^n)) \le \phi \}.$$

Example 3.13. Let X, Y, f and $(L = [0, 1], \odot)$ be defined as in Example 3.4. Let $w \in E(Y \times Y)$ be an \odot -equivalence relation on X as

$$w(x,x) = w(y,y) = w(z,z) = w(x,y) = w(y,x) = 1,$$

$$w(y, z) = w(z, y) = 0.6, w(x, z) = w(z, x) = 0.5.$$

Then

$$w^{2}(x,x) = w^{3}(y,y) = w^{3}(z,z)$$
$$= w^{3}(x,y) = w^{3}(y,x) = 1,$$
$$w^{3}(y,z) = w^{3}(z,y) = w^{3}(z,z) = w^{3}(z,x) = 0.$$

We obtain $\mathbf{D}_w, \mathbf{U}_{\mathbf{D}_w}, \mathbf{D}_w^f$ and $\mathbf{U}_{\mathbf{D}_w}^f = \mathbf{U}_{\mathbf{D}_w^f}$ as follows:

$$\begin{array}{ll} \mathbf{D}_{w} &= \{v \in E(Y \times Y) \mid w^{3} \leq v\} \\ \mathbf{U}_{\mathbf{D}_{w}} &= \{\psi \in \Omega(Y) \mid \Gamma(w^{3}) \leq \psi\} \\ \mathbf{D}_{w}^{f} &= \{u \in E(X \times X) \mid ((f \times f)^{\leftarrow}(w))^{3} \leq u\} \\ \mathbf{U}_{\mathbf{D}_{w}}^{f} &= \mathbf{U}_{\mathbf{D}_{w}^{f}} = \{\phi \in \Omega(X) \mid f^{\leftarrow}(\Gamma(w^{3})) \leq \phi\}. \end{array}$$

From Theorems 3.9 and 3.10, we can define subspaces in the obvious way.

Definition 3.14. Let A be a subset of X and $i: A \rightarrow X$ an inclusion function.

- (1) Let (X, \mathbf{U}) be a Hutton (L, \otimes) -uniform space. The pair (A, \mathbf{U}_A) where $\mathbf{U}_A = \{\phi \in \Omega(A) \mid \exists \psi \in \mathbf{U}, i^{\Leftarrow}(\psi) \leq \phi\}$ is said to be a *subspace* of (X, \mathbf{U}) .
- (2) Let (X, \mathbf{D}) be an (L, \odot) -uniform space. The pair (A, \mathbf{D}_A) where $\mathbf{D}_A = \{u \in E(A \times A) \mid \exists v \in \mathbf{D}, \ (i \times i)^{\leftarrow}(v) \leq u\}$ is said to be a *subspace* of (X, \mathbf{D}) .

Example 3.15. Let X, Y, f and $(L = [0, 1], \odot)$ be defined as in Example 3.4.

(1) Define $\phi \in \Omega(Y)$ as follows:

$$\phi(1_{\{x\}}) = \phi(1_{\{y\}}) = 1_{\{x,y\}}, \ \phi(1_{\{z\}}) = \phi(1_{\{z\}})$$

Since

$$\phi\otimes\phi(1_{\{x\}})=\phi\otimes\phi(1_{\{y\}})=1_{\{x,y\}}, \phi\otimes\phi(1_{\{z\}})=1_{\{z\}},$$
 by Lemma 2.4(2), $\phi\otimes\phi=\phi$. We have $\phi\circ\phi=\phi$ because
$$\phi\circ\phi(1_{\{x\}})=\phi\circ\phi(1_{\{y\}})=1_{\{x,y\}}, \phi\circ\phi((1_{\{z\}}))=1_{\{z\}}.$$
 Since

$$\phi^{-1}(1_{\{x\}}) = \phi^{-1}(1_{\{y\}}) = 1_{\{x,y\}}, \phi^{-1}(1_{\{z\}}) = 1_{\{z\}},$$

Hence $\phi^{-1} = \phi$. Define $\mathbf{U} = \{\psi \in \Omega(X) \mid \phi \leq \psi\}$. Then \mathbf{U} is a Hutton (L, \otimes) -uniformity on X. We obtain $\mathbf{D}_{\mathbf{U}} = \{v \in E(X \times X) \mid \Lambda(\phi) \leq v\}$. Since $\phi \circ \phi = \phi$ and $\phi^{-1} = \phi$, by Theorem 2.12(7), $\Lambda(\phi)$ is an \odot -equivalence relation such that

$$\Lambda(\phi)(x,y) = \phi(1_{\{x\}})(y) = 1_{\{x,y\}}(y) = 1,$$

$$\Lambda(\phi)(x,x) = 1, \ \Lambda(\phi)(x,z) = 0$$

$$\Lambda(\phi)(y,x) = 1, \ \Lambda(\phi)(y,y) = 1, \ \Lambda(\phi)(y,z) = 0$$

$$\Lambda(\phi)(z,x) = 0, \ \Lambda(\phi)(z,y) = 0, \ \Lambda(\phi)(z,z) = 1$$

Furthermore, $\Lambda(\phi) \circ \Lambda(\phi) = \Lambda(\phi)$, $\Lambda(\phi^{-1}) = \Lambda(\phi)^s = \Lambda(\phi)$ and $\Lambda(\phi) \odot \Lambda(\phi) = \Lambda(\phi \otimes \phi) = \Lambda(\phi)$. Hence $\mathbf{D}_{\mathbf{U}}$ is an (L, \odot) -uniformity on X and $\mathbf{U}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{U}$.

(2) We obtain $f \leftarrow (\phi) \in \Omega(X)$ as follows:

$$f^{\Leftarrow}(1_{\{a\}}) = f^{\Leftarrow}(1_{\{b\}}) = f^{\Leftarrow}(1_{\{c\}}) = 1_{\{a,b,c\}},$$
$$f^{\Leftarrow}(1_{\{d\}}) = 1_{\{d\}}$$

Then $\mathbf{U}^f = \{ \psi \in \Omega(X) \mid f^{\Leftarrow}(\phi) \leq \psi \}$ is a Hutton (L, \otimes) -uniformity on X. We obtain $\mathbf{D}_{\mathbf{U}^f} = \{ u \in E(X \times X) \mid \Lambda(f^{\Leftarrow}(\phi)) \leq u \}$ where

$$\Lambda(f^{\Leftarrow}(\phi))(x,y) = \begin{cases} 1 & x \in \{a,b,c\}, \ y \in \{a,b,c\}, \\ 1 & x = d, \ y = d, \\ 0 & \text{otherwise.} \end{cases}$$

We obtain $\mathbf{D}_{\mathbf{U}}^f = \{u \in E(X \times X) \mid \exists v \in \mathbf{D}_{\mathbf{U}}, (f \times f)^{\leftarrow}(v) \leq u\}$. Since $(f \times f)^{\leftarrow}(\Lambda(\phi)) = \Lambda(f^{\leftarrow}(\phi))$, we have $\mathbf{D}_{\mathbf{U}^f} = \mathbf{D}_{\mathbf{U}}^f$.

Acknowledgement. This work was supported by the research grant of the Chungbuk National University in 2006.

References

- [1] J. Gutiérrez García, M. A. de Prade Vicente and A.P. Šostak, "A unified approach to the concept of fuzzy *L*-uniform spaces," Chapter 3 in [12], 81-114.
- [2] U. Höhle, Many valued topology and its applications, Kluwer Academic Publisher, Boston, 2001.
- [3] U. Höhle and E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [4] U. Höhle and S. E. Rodabaugh, "Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory," *The Handbooks of Fuzzy Sets Series*, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [5] B. Hutton, "Uniformities on fuzzy topological spaces," J. Math. Anal. Appl. 58 (1977), 559-571.
- [6] A. K. Katsaras, "Fuzzy quasi-proximities and fuzzy quasi-uniformities," Fuzzy Sets and Systems **27**(1988), 335-343.
- [7] Y. C. Kim and Y. S. Kim, "Two types of uniform spaces," *International Journal of Fuzzy Logic and Intelligent Systems* **6** (2006), no. 1, 77-84.
- [8] Y. C. Kim and J. M. Ko, "The images and preimages of *L*-filterbases," (Article in press) *Fuzzy Sets and Systems*.

- [9] W. Kotzé, "Uniform spaces," Chapter 8 in [4], 553-580.
- [10] Kubiak, Mardones-Perez and Prada-Vicente, "L-uniform spaces versus I(L)-uniform spaces," (Article in press) $Fuzzy Sets \ and \ Systems$.
- [11] R. Lowen, "Fuzzy uniform spaces," J. Math. Anal. Appl. 82(1981), 370-385.
- [12] S. E. Rodabaugh, E. P. Klement, "Toplogical And Algebraic Structures In Fuzzy Sets," *The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic* 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- [13] S. E. Rodabaugh, "Axiomatic foundations for uniform operator quasi-uniformities," Chapter 7 in [12], 199-233.

Yong Chan Kim

Professor of Kangnung University. Research Area: Fuzzy topology, Fuzzy logic E-mail: yck@kangnung.ac.kr

Seok Jong Lee

Professor of Chungbuk National University Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: sjl@chungbuk.ac.kr