References
- Z. Dokur and T.Olmez, 'ECG beat classification by a novel hybrid neural network,' Computer Methods and Programs in Biomedicine, Volume 66, Issues 2-3, pp. 167-181, 2001 https://doi.org/10.1016/S0169-2607(00)00133-4
- P. M. Rautaharju, S. H. Zhou, et al., 'Comparability of 12-lead ECGs derived from EASI leads with standard 12-lead ECGS in the classification of acute myocardial ischemia and old myocardial infarction,' Journal of Electrocardiology, Volume 35, Issue 4, Part 2, pp. 35-39, 2002
- U. Rajendra. Acharya, P. Subbanna Bhat, et al., 'Classification of heart rate data using artificial neural network and fuzzy equivalence relation,' Pattern Recognition', Volume 36, Issue 1, pp. 61-68, 2003 https://doi.org/10.1016/S0031-3203(02)00063-8
- www.support-vector.ws/html/downloads.html
- B. Heden, 'Agreement Between Artificial Neural Networks and Experienced Electro-cardiographer on Electrocardiographic Diagnosis of Healed Myocardial Infarction,' JACC, Vol.28, No.4, pp. 1012-1016, 1996 https://doi.org/10.1016/S0735-1097(96)00269-0
- R. Silipo, M. Goru, et. al., 'Classification of Arrhythmic Events in Ambulatory Electrocardiogram, Using Artificial Neural Networks', Computers and Biomedical research Vol.28, pp. 305-318, 1995 https://doi.org/10.1006/cbmr.1995.1021
- K. Sternickel, 'Automatic pattern recognition in ECG time series', Computer Methods and Programs in Biomedicine, Vol.68, pp. 109-115, 2002 https://doi.org/10.1016/S0169-2607(01)00168-7