Commun. Korean Math. Soc. 21 (2006), No. 3, pp. 475-490

RELATIONS IN THE TAUTOLOGICAL
RING BY LOCALIZATION

FUMITOSHI SATO

ABSTRACT. We give a way to obtain formulas for mlbﬁﬂ in terms
of ¢ and A-classes where 7 : Mg ni1 — Myn(g = 0,1,2) by the
localization theorem. By using the formulas, we obtain Kontsevich—
Manin type reconstruction theorems for Mo (P™), M1,n, and M2,.
We also (re)produce a lot of well-known relations in tautologi-
cal rings, such as WDVV equation, the Mumford relations, the
string and dilaton equations (g =0, 1, 2) etc. and new formulas for

TeAghyr + -+ + ’%bfmilf)

1. Introduction

Let Mg, be the moduli of genus g smooth curves with n distinct
marked points defined over the complex numbers. There is a compacti-
fication of M, ,, denoted by M, which is the moduli of genus g stable
curves with n marked points. A genus g stable curve with n marked
points is an arithmetic genus g complete connected nodal curve with
distinct smooth 1 marked points and finite automorphisms. M, has a
stratification according to topological types.

Let A*(M,,) be the Chow ring with Q-coefficients. The system
of tautological rings is defined to be the set of smallest Q-subalgebras

containing 1(# 0) of the Chow rings,

R (Mgpn) C A*(Mgn)
satisfying the following two properties:

1. The system is closed under pushforward and pullback via all the
maps forgetting the last marking (Figure 1):

Mg, — _]\797”_1.
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FIGURE 1. Forgetting the last marked point *

2. The system is closed under pushforward and pullback via all the
gluing maps (Figures 2-3):

L Mglynlu* X Mgman# - Mg1+92,n1+n2

L Monugs gy = Mot
with attachments along the marking * and #.

==, =) —

FIGURE 2. Gluing * and #

v — Q2

FIGURE 3. Gluing * and #

While the definition appears restrictive, the standard v, k and A-
classes all lie in the tautological ring [17]. For example,

— (b ([M g ) X [Mo3])?) = t;

where ¢ : Mg,{1,2,...,i—1,*,i+1,..,,n} X MO,{#,i,n—{—l} - Mg,n-}-l-
The tautological rings possess a rich conjectural structure [7].

ProBLEM 1. Find out relations in tautological rings and ways to
compute intersection numbers recursively from the moduli stacks with
smaller g or n.

We can ask the same problem for other moduli stacks.

In this paper we will answer the above problem in lower genus cases
(9 =0,1,2) for M, and genus 0 case for Mg, (P™). The technique we
will use is the localization theorem for equivariant Chow group [1], 3],
6], [12]. More precisely, we give a way to obtain formulas for myf
in terms of ¢ and X where 7 : Mgn41 — Mgn(g =0,1,2) by the local-
ization theorem. By using the formulas, we obtain Kontsevich—Manin
type reconstruction theorems. We also (re)produce a lot of well-known
relations in tautological rings, such as WDVV equation, the Mumford
relations, the string and dilaton equations (¢ = 0,1,2) etc. and new

formulas for w*(Ag@bﬁH +- 4 wﬁi’{)
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2. Background

2.1. Dimension formula

In this section, we list virtual dimensions for the stacks which we will
deal with in the preceding sections.

Let X be a smooth projective variety and 8 € 4;(X). Let M, ,(X, )
be the moduli of genus g, n-pointed stable maps to a projective variety
X with 3 class. A genus g, n-pointed stable map to X with 3 class
is a map from a genus g nodal curve with n smooth distinct points to
X whose image is class 8 € A;(X) [8]. By deformation theory and
the Riemann-Roch formula, we can calculate the virtual dimension of

MH;’”’(X?ﬁ);
vir. dim. My ,(X,8) = (1 — g)(dimX — 3) — / wx +n.
) B

The special cases which we will use frequently in this paper are:
vir. dim. Mg, =dim. My, =39 —-3+n
vir. dim. Mg, (P, d) =29 — 2+ 2d + n.

2.2. Virtual localization

The higher genus Kontsevich-Manin spaces M ,,(P™, d) are in gen-
eral non-reduced, reducible, singular, so we can not apply the usual
localization formula [1]. The answer to overcome this difficulty is the
virtual localization theorem by Graber and Pandharipande [12].

THEOREM 2 (The virtual localization theorem). ([12] §1) Suppose f :
X — X' isa T = (C*)™"'-equivariant map of proper Deligne-Mumford
quotient stacks with a T-equivariant perfect obstruction theory. If i :
F' — X'is a fixed substack and ¢ € A%(X), let fr, : F; — F' be the
restriction of f to each of the fixed substacks F; C f~(F’). Then

) i*Fic i/*f*c
E sz* =
F;

6,T(F‘ivir) 6T(F’/vjr)
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where i, : F; — X and ep(F"") is the virtual equivariant Euler class
of “virtual” normal bundle F"¥.

REMARK 3. 1. If X and X’ are nonsingular with the trivial perfect
obstruction theories ([2] §4), then the virtual localization formula
reduces to the standard localization formula.

2. The conditions in the theorem are satisfied for the Kontsevich—
Manin spaces M, (P™, d) with the induced action by the diagonal
action of T on P™, and ep(F") can be explicitly computed in
terms of ¢ and A-classes ([12] §4).

2.3. C*-action on P!

We define a T = C*-action on P! for @ € T and (zg : z1) € P! by
a-(xo: x1) = (xo : axy). There are two fixed points 0 = (0 : 1) and
oo =(1:0).

This T-action induces T-actions on M, , (P!, d).

3. Pushforward of yf

In this section, we will obtain the formulas m,¥ ,;, where 7 : Mg 41
— Mgy, for g < 3. We will explain the detail for g = 0 case.
Consider the following map

[ MO,n(Pla 1) — M_O,n X ]PIS

(g (Cip1y..oypn) — X) — ((C;pl, e ,pn)s“,g(pl))

where (C;py, ..., pn)™ is a marked curve obtained by contracting all the
rational components which have at most two special points.

We know that f.(1) = 0 by dimension counting (dim(My, x P') <
dim (Mo (P!, 1)). If we choose one component of fixed loci F' = My, x
0( My,,) in the target space, by the localization theorem we have

€T

-
ey ZfFi* Z}E}J) =0.
F; !

Now, we have to write up all the components of fixed loci in the
domain which maps to F’. The general fixed loci are as in Figure 4.
There are three types of degeneration (Figure 5). The first one is the
case m = n, which is isomorphic to —Mo,nﬂ. The second and third ones
have only one point on a rational tail. These are isomorphic to M_O,n-
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P
00
S
n — m points
P
0
N

m points

FiGURE 4. General Fixed Locus

Pl P! P!
o0 pi 00 0
— —_ n — 1 points | —
p1 0 p\lfﬁj 0 " 0
N "
n points n — 1 points

F1GURE 5. Three Types of Degeneration

Calculating the equivariant Euler classes for each fixed loci as in [12],

we obtain
n

@ (=) * 2 o)+ (coe=om)
1 1
+ D L*(t(t = Y1) (1) (=t - ¢|ICI+1)) "

1e1|1, 1922

where I C {1,2,...,n}.
To compute 7T*’¢)£ +1, calculate the coefficient of t~k-2,

EXAMPLE 4. 1. If we take the coefficient of =2, only the first term
will contribute, so 7.1 = 0.

2. If we take the coefficient of t=2, the last summation will not con-
tribute. We will obtain w41 =n — 2.

3. If we take the coefficient of t 7%, We will obtain m 2, | = Y7 | thi—
A where A is all the boundary divisors.

For genus 1 case, we consider
f: Mlm(Pl, 1) —» Ml,n x PL.

and do the similar computation. In genus 1 case, instead of ﬂ*wﬁ 1
we will have ﬂ*(Alwﬁﬁ + ok 4+1)- But we can compute Wk 41 inductively
because A-classes will be pushforwarded to the same A-classes or we
know what A-class is from [17].

For genus 2 case, we consider
fiMapn(PL1) — Mo, x P
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But in this case, we have dim(Mg (P!, 1))= dim(M2,, x P!), so that
f«(1) = ¢. In fact we know that ¢ = 4 [15] or by a further similar
localization calculation in §8 1. In genus 2 case, instead of 7&1/),’2 +1) We
will have W*(Agwkﬁ + /\11/Jn+1 ¥F. ). But we can compute 9F ; just
as genus 1 case. For A-class, see [9)].

4. The case of Mg ,1(P™,d)

In this section, we will generalize the method in §3 to MO,nH(IP’m, d).
This will give a simplified version of the result in [3]. In this case, we
have pullbacks of powers of the hyperplane class besides pushforward of
powers of 1-class. Even to compute the pushforward of power of )-class,
we need the knowledge of mixed classes because the general fixed locus
will be a fiber product over P™.

As before, we have analogous maps to 7m and ¢, and we will call
these maps 7 and . Besides these, we have one more family of maps
ev; : Mo,nH(Pm, d) — P, that is the evaluation map at i-th point.

Mons1(P™, d) g5 P™

Mo (P™, d)

we want to find formulas for m.(¥f , NevH).
This time we will consider the following map:

f i Mon(P™ x P, (d, 1)) = Mon(P™,d) x P.

To include a power of the hyperplane class, we consider the following
map to the linear sigma model [4], [10]:

g: Mo’n(]}”m X ]Pl, (d, 1)) - TW_O’O(Pm X Pl, (d, 1))
— P = P(Sym4(V) @ C™*)
where V is P! = P(V*). Denote Hr = c{(Opgx(l)). Consider one

component of fixed loci F' = Mg ,(P™, d) x 0(2 M ,(P™,d)). Then by
the localization theorem, we have

Uk ( *HT) _ " fi(g"Hr)'
ZfFl* er(Fy)  er(F)
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As in §3, we need to classify all the fixed loci which map to F’, then
write down the Euler classes of each fixed loci and restrictions of ( g*HT)l
to each fixed loci. The general fixed loci F}’s are as in Figure 6.

As §3, we have three types of degeneration. In each type the rational
tail growing out from 0 or co on P! maps to P™ with total degree d.
The Euler classes are exactly same as §3.

Now we need to know the restriction of (¢*Hr)' to each fixed loci.
Following calculations in [4], we will obtain f,((g* Hr)")|# is a polyno-
mial in ¢, p(t) and (¢*Hr)!|F, = ev*{(H — et)}.

So we have
1 H' - ev; H' , evi(H — dt)!
@ = (25 )+ 2 )~ (e o)

. )

=2
1 evf (H—et) \  pp)

Z - <t(t —Yr4) () (=t = ¢|Ic|+1)) ot

Pl

degree e —ce 0
N~
n — m points
p1

degree d —e —H—H—¢—F— 0
N—e

m points

|

+

non-degenerate fixed loci

p—

]P)m
F1GURE 6. General Fixed Locus

By calculating the coefficient of t *(k > 2), we can obtain the formula
for m (Y2 Nevs,  HY).

5. Reconstruction theorem

In this section we explain why it is enough to know (v, ﬂ'l N
ev’ .1 H') to compute all the genus-zero Gromov-Witten invariants.

By knowing the projection formula and ¢; = 7*¢; + D; 41 [15], we
have

n
/_ TT0E 0 ev; B O (g 0 evryy BY =

Mon(Pm,d) ;-1
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n
/_ H{(?/)i — D))" Nev; HE Y Ny g Nevyyy H'
Mon+1(P™,d) 5y
where D; 41 is a divisor such that i-th marked point and (n + 1)-th
marked point are only marked points on a rational tail.
If we expand the right hand side, you have f_M_O,n+1 ) T, {()ken

ev; Hi}Nyk Nev? ; H and other terms. But other integral terms have
D; p41 in their integrand, so they are integral on smaller moduli spaces.
Thus inductively we can calculate Gromov—Witten invariants starting
from one-point invariants.

By this method, we can obtain the string, dilaton and divisor equa-
tions. ’

REMARK 5. 1. If m = 0, that is P°, then _]\7073 is the smallest
moduli in this family. So in this case we can calculate Gromov—
Witten invariants starting from three-point invariants instead of
one-point invariants. '

2. We have similar theorems for M, (g = 1, 2).

3. By pulling back the formula of 7.~ 400 My, to Myn(X,0), we
can obtain the sting and dilaton equation for genus 1, 2.

6. Genus 0 relations

6.1. The WDVYV equation

The WDVV equation is one of the crucial equations in Gromov-
Witten Invariants (it implies associativity of quantum cohomology, flat-
ness of Dubrovin connection). But the well-known proof depends on
the knowledge of —Mo,4 = P, In this section we will prove the WDVV
equation without knowing the above isomorphism.

Consider the following map

f i Moa(PH 1) — Mog x P! x P! x P!

(g 1 (C;p1,p2,p3) — Pl) > ((C;pl,pa,ps)“,g(p1),g(pz),g(p3)>.

From now on, for maps we will consider in this paper, the first com-
ponent is forgetting a map to P!, the i-th P! is the image of the i-th
point. '

We know that f.(1) = ¢ for some constant ¢ by dimension counting,.
So if we choose one component of fixed loci F/ = MOA x 0 x 0 x oo in the
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target space, then there are two fixed loci which map to F’ (Figure 7).
By the localization theorem, we will have

C

L*mj%N4xi—%)+“4m—Lx4ﬂziﬁ

here “” and “” indicate 1/-classes live on different components. We will
use this notation in the rest of this paper.

= O : first point
X : secondnd point
[1: third point
O A fourth point

FicuUre 7. Two Fixed Loci

By taking the coefficient of t=#, we obtain

By changing the role of points, we can prove all three boundary di-
visors are rationally equivalent to 3.

6.2. Relation ¢; = 7*y; + D; 41

It is enough to prove for Mo 5. The cases of Mo,n(X ,3) will follow
by distributing appropriate points and degrees. We will prove 3 =
Pz + D3,

Consider the following map as before

f : M075(P1, 1) — Mo,g, X ]pl X ]P)l X ]Pl.

We know that f.(1) = ¢ for some constant ¢ by dimension counting.
So if we choose one component of fixed loci F/ = Mo,zx x 0% 0xooin
the target space, then there are four fixed loci which map to F'. By the
localization theorem, we have

(4) Zd(m) - L*<t(t - A (—t)(—lt - é’>>

1 1 1 1 c
*“@a—w@«¢x4—w@)+“gu—w@ew«¢— 7)==
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m —a—F— O : 1st point
X : 2nd point
Oy oY O : 3rd point
= oA A 4th point
F v : 5th point
© £ ©

FiGURE 8. Four Fixed Loci

By taking the coefficient of ¢t~4, we will obtain
Y3 = /\S\
But we know 7*3 from §6.1,

So this implies 13 = 7*¢3 + D3 5.

7. Genus 1 relations

7.1. Relation i3 = 92 on —M1,2

Consider the following map f : M1 2(P!,1) — M2 x P. We have

four fixed loci which map to T/_fl,g x 0 (Figure 9). By the virtual local-
ization theorem, we obtain

. (75) +id (s

+id, (55 ) + o (St ) = O

o o

FiGURE 9. Four Fixed Loci
By taking the coefficient of t~¢, we have
() m(=Mags+E) = (<A + ) = (<A + 1) + (1),
By switching the role of the first point and the second point, we will get
(6) me(=A1s +95) = (A1 +91) = (= A1+ ¥2) + (1)
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By equating (5) and (6), we have
(™) =A1+ 12 = =1 + .
So we have 11 = 12 on M.

7.2. Relation A\ =

In stead of considering a degree 1 map to P!, we consider a degree
2 map and then obtain \; = . Consider the map M11(P!,2) —
Ml,l x P!, This time there are 8 fixed loci which map to Ml,l x 0
(Figure 10). By calculating the Euler classes for each fixed loci, we
obtain

A —A1
() ”3<2t(t—¢21)4(;t—¢3))+7r< %(——l/;r)t( )>
i —t “A —t
T ) (2<—t><—- P )
1 1 -1+t
+(aaem) * (Cocane-w)

—A1+t ) —A1 —t
- 7r*((—If)(—%;t(lﬁ - wl)t) i <153(—15)(—7«‘ - 1/11)) =0

1nd1cates a ratlonal component
Wthh maps to P! by degree 2
J J %@—l— A 0O : lst point

Figure 10. Eight Fixed Loci

+7T*(

indicates a ratlonal component
which maps to P! by degree 1

Taking the coefficient of t™° and simplifying, we can get the formula.
Knowing the string equation and A; = 93 on M7 ;, you can see that the
last three terms won’t contribute.

8. Genus 2 relations

8.1. Relations ¢y =4 and 10A\; = §p + 26; on Mzo

__In this section, we will obtain a well-known relation 10\; = dp+24; on
M4 o where dg is a divisor which is the closure of the locus of irreducible
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singular curves, and d; is the locus of singular curves Cy | Cs,C1 (| Co =
{one point}, genus of C; is 1. Denote A = §y + 6.

Consider the following map f : M21(P!,2) — M2 x PL. By dimen-
sion counting, we know that f.(1) = 0. We have fifteen fixed loci which
map to M2 x 0 (Figure 11). Computing the Euler classes of each fixed
loci, we get

7r2( Ao — A\t + t2 ) w( Ao — M\t + t2 )
ot —va)(t —vs)) " \HENE - ) (—8)
*”4a4xgi§$tf—mﬂ

+ 7T*(t(t/\—2zb—z)/\(l—tij)r(f)2t))
@¥Ai$ﬁwﬂ+“4wat$:;gimﬂ

+id*(t

. Xy 4 At + ¢2
+id (o)
+¢ (1 —Mt? )
T\28(t — o) (t — 3)(—t)(—2t)
+7T*L*< ~A +t —A —t )
5t — 95t — 9%) (—0)(—t — ¥}
1 XM+t A=t
i *(2 t(5)(5 —¥5) —t(§)(5 - ¢i’))

A+t =M+t 1

ti (t(t — 1p) t(t — ) (—t)(—2t)>
A+t —A1—t

" L*<t2(t — ) (=) (=t —¢y)(—t - %’>>

—A1+t —A1—t

s (t(t — 1) (=t)(=t —¢y) (-t - 5'))
1 —/\1 —1 —>\1 -t 1

T <§ (=) (=t — 1) (—=t)(—t — 1) 73)
11 —A1—1

+L*<§t‘3(—t)(—t— (=t — é’))
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FIGURE 11. Fifteen Fixed Loci

To compute cg in §3, we will take the coefficient of t73. Then only
the first seven terms will contribute to the calculation.

1
(9) 5 + Yavhs + ¥3) = 2ma(=As + 20) + mu(= A1 + 91 + )
1
+ 571'*(—)\1 +19) —4+1=0.
For the calculation of the first term, you can assume 1,[)% = 1/1% because

you will pushforward twice by w. So the first term will be computed by
the following way.

SR + Yo + R) = o220 + ark)

(10) = (22 + cot)

The other terms can be calculated by a similar way. Then we obtain

—-Co(CO - 4) =0.

N —
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We know that ¢y is nonzero, so ¢y = 4. .
The coefficients of t=* give 10\, = %Q + 207 on Mo 1. Multiplying the
relation by 11 and pushforward to MQ’O, we have what we wanted.

8.2. Relation k; = 2\ + & on My

Consider the following map f :Mg,l(lP’l, 1) — le x PL. As before,
we will have a codimemsion 2 relation in the tautological ring of M3 1.
If we pushforward this relation to -]\7270 by 7 : Mz,l — —J\/.Tz,o, we will
have k1 = 2A; + 01 on M2o. Combining with the relation in §8.1, we

have
K1+ A

M=

8.3. Mumford’s relation

In this section, we will prove a Mumford’s relation
Y7 = M+ h =CEOHD,

Consider the following map f : Mya(P',1) — Mo x P" just as
before. There are six fixed loci which map to M 2,2 X 0 (Figure 12).

=

#

@ @ @ # : 1st point
% : 2nd pint

FI1cure 12. Six Fixed Loci

We will have
Te(Aoths — M¥d + ¥3) = (—Mvbe + ¥3) — (A1 + ¥F)

+2 +Co Dt oD +uu(=M + ).

By changing the role of the first and second points, we have

Te(A2ths — MY2 +93) = (A1 + ¥2) — (A2 + ¥3)

+2 + G oD +u(=M +91).



Relations in the tautological ring by localization 489

By equating, we obtain the following relation
(=Magz +3)+ = (=g + 9D+ F =D

on HM. Multiplying this relation by 12 and then pushforwarding to
M 1, we have

(P2 x L H. S)) = 4o + Mthy — 92 + 4
(b2 * RH.S.) = =3 191 + 31[)%

Thus we will have what we wanted.
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